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ABSTRACT
Coherent structures in the far field of a round turbulent

jet at exit Reynolds number Re = 17000 are investigated
experimentally by means of time-resolved 2D-3C PIV in
stream-wise and cross-stream sections of the flow. Empir-
ical mode shapes are extracted via spectral proper orthog-
onal decomposition and the results are compared to two
modelling approaches. A local quasi-parallel stability anal-
ysis is carried out based on the self-similar velocity profiles
and a global optimal response analysis is performed. For
both analyses, an eddy viscosity model is employed. The
results of both models compare well with the experiments
for azimuthal wavenumbers m = 0 to m = ±3 over a wide
frequency range. In particular, the optimal response modes
show an excellent agreement of up to 98% with the empir-
ical modes, even representing dynamics in the inertial sub-
range. Within the resolvent framework, non-modal effects
are indirectly accounted for and the non-parallelism of the
flow does not constitute a restriction to the results as op-
posed to the quasi-parallel analysis which shows an agree-
ment of up to 95% with the experiments.

INTRODUCTION
The far field of axisymmetric jets has been investi-

gated for many decades due to their basic characteristics
and self-similar scaling laws. Although researchers (e.g.,
Wygnanski et al. (1986)) presumed that self-similarity of
jets and wakes is connected to the existing coherent struc-
tures in the far field, conclusive evidence for this hypothe-
sis has not been provided due to the high requirements on
the turbulence data and post processing. In a recent ex-
perimental study, the self-similarity of the coherent struc-
tures in pipe flows was demonstrated by Hellström et al.
(2016) which strongly substantiate the connection between
self-similarity and coherent structures. For the jet far field,
an exact determination of the modal structures and their

temporal and spatial behaviour has proven challenging. In
the study of Gamard et al. (2004), the far field structures
were investigated quantitatively and self-similar scaling of
the POD eigenspectra was demonstrated and later extended
by Wanstrom (2009).

In terms of modelling coherent structures based on lin-
ear stability analysis, it is currently unclear whether a lin-
earised modal analysis of the mean flow is applicable to the
far field. Considering the near field of natural and forced
jets, excellent agreement has been shown in a number of
experimental and numerically-based studies (Gudmunds-
son & Colonius (2011); Oberleithner et al. (2014); Cava-
lieri et al. (2013); Beneddine et al. (2016)). The following
key questions, however, remain open: Which range of tur-
bulent scales are resolved by the eigenmodes of the mean
flow and how should the influence of stochastic forcing in-
duced by background turbulence and/or inherent nonlinear-
ities be modelled? The far field of a jet which is self-similar
for all turbulent statistical moments, provides an excellent
case to address these questions. In a previous study (Kuhn
et al. (2018)) a modal quasi-parallel linear stability analy-
sis (LSA) was performed and azimuthal mode m =±1 was
predicted to be the only unstable mode based on a local spa-
tial analysis in self-similar coordinates. However, as shown
before by Gamard et al. (2004); Wanstrom (2009) and many
others, experiments clearly show that the far field comprises
a large variation of azimuthal modes over a wide range of
frequencies. The objective of this paper is to extend the pre-
vious analysis to determine whether a larger proportion of
the turbulent spectrum can be modelled correctly via lin-
ear dynamics. We address this issue by comparing the ex-
perimentally obtained mode shapes to the results of a local
quasi-parallel linear stability analysis (LSA) and the opti-
mal response modes of a resolvent analysis.
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EXPERIMENTAL SETUP
The experiments were carried out in the water jet test

rig shown in figure 2 (Cater & Soria (2002)). The flow
is generated by a piston-in-cylinder system which is con-
trolled by a stepper motor-driven lead screw. A high-speed
stereoscopic PIV system was used to acquire data at two
stream-wise sections (spanning 35 < x/D < 95) and two
cross-stream sections (x/D = 50 and x/D = 80) of the flow.
Water-filled prisms were mounted to the tank walls, to en-
sure proper optical access and overcome changes in re-
fractive indices. The presented results are derived from
cross-stream and stream-wise velocity data of the flow at
a Reynolds number of Re = 17000 based on the nozzle exit
bulk velocity of u0 = 8 m/s and the nozzle exit diameter
D = 2.1 mm.

EMPIRICAL MODE EXTRACTION AND MOD-
ELLING APPROACHES

The accurate extraction of coherent structures from
measured or simulated flow data of the far field is a chal-
lenging task due to their low energy content and the wide
spectrum of turbulent scales. To account for this, we ap-
ply the frequency-domain spectral proper orthogonal de-
composition (SPOD) proposed by Lumley (1967). The
SPOD is realised by dividing the time-series into (over-
lapping) segments, transforming the velocity signal of each
segment into frequency domain and subsequently perform-
ing a POD for each frequency. Due to the clear frequency
separation, this method allows for a consistent compari-
son with results from analytical models. A Fourier mode
decomposition is also discrete in frequency but results in
noisy modes for strongly turbulent flows. A comparison of
modes extracted via SPOD, Fourier mode decomposition,
and time-domain SPOD was presented in a previous inves-
tigation (Kuhn et al. (2018)) on the same set of velocity
data presented here. In order to separate between different
azimuthal wavenumbers m, a Fourier transform in the az-
imuthal direction (û′(r, t,m) =

∫ 2π

0 u′(r,θ , t)eimθ dθ ) is ap-
plied to the velocity fields from cross-stream measurements
before performing the SPOD.

Within the present study, two approaches are used to
model the far field flow structures. A local spatial linear
stability analysis (LSA) is carried out in self-similar coor-
dinates based on the measured self-similar velocity profiles.
This technique corresponds to an eigenvalue analysis of the
averaged equations of motion and continuity using a normal
modal ansatz to describe the coherent perturbations. The
coherent velocity is described by

ũ(x, t) = û(r)ei(αx+mθ−ωt)+ c.c. (1)

where α is the complex stream-wise wavenumber, ω the
real frequency, m the real azimuthal wavenumber, û the ra-
dial amplitude function, and c.c. the corresponding complex
conjugate. The perturbation ansatz for the pressure fluctu-
ations is analogous to eq. 1. A more detailed explanation
about the numerical approach can be found in Oberleithner
et al. (2011) and details with regard to the present case are
described in Kuhn et al. (2018). From the resulting eigen-
value spectrum, the spatially growing (−αi > 0) and decay-
ing (−αi < 0) modes are identified and the mode shape û is
determined from the corresponding eigenfunction. The sec-
ond modelling approach is a global resolvent analysis which

is also based on the linearised governing equations of the
flow (for details see e.g. Garnaud et al. (2013)) but solves
an optimisation problem instead of directly examining the
stability of the flow. The optimisation parameter is the gain
which is defined as µ2 =

||Ψ||2r
||Φ||2f

where Φ is an at first arbi-

trary forcing of the system leading to the response Ψ. The
ansatz for perturbation and response modes is harmonic in
time and azimuthal direction but not in stream-wise direc-
tion:

q̃(x, t) = q̂(x)ei(mθ−ωt) (2)

By optimising the gain µ2, the resolvent analysis deter-
mines the pair of optimal forcing and optimal response, for
which the maximum increase of µ2 is obtained which de-
pends on the chosen norm. In this study, the L2 norm is
applied to the forcing and the response.

Within the present study, the resolvent analysis is per-
formed by the FELICS code using a finite element formu-
lation on an unstructured 2D grid. The mean flow was
generated from the measured self-similar velocity profiles
in physical coordinates in a domain of 30 < x/D < 900.
The scaling parameters for the mean flow generation are
centreline velocity ucl = Au0(x/D− x0/D)−1 and velocity
half-width radius r1/2 = Db(x/D− x0/D). From the exper-
iments the spreading rate was determined to be b = 0.091,
the decay rate A = 6.1, the virtual origin x0 = 1.5, and noz-
zle bulk velocity is u0 = 8 m/s. Homogeneous Dirichlet
boundary conditions were set at the inlet and at r→∞. The
boundary conditions on the jet axis depend on the azimuthal
wavenumber.

In order to test the self-similarity of the resulting op-
timal response modes, several frequencies were evaluated,
however, the self-similar state could not be fully confirmed
for both forcing and response modes. Possible reasons
for this are the upstream boundary condition and the cho-
sen norm that defines the gain µ2. Instead of using ho-
mogeneous Dirichlet boundary conditions, homogeneous
Neumann boundary conditions were tested. The results
mainly differed in the optimal forcing modes and showed
the same inconsistency towards self-similar scaling of the
overall spatial amplitude. Nevertheless, self-similarity is
very closely achieved in terms of relative magnitudes be-
tween the velocity components and also in terms of their
phase angles. For the presented results we, therefore, ne-
glect the differences in overall spatial growth.

In both modelling approaches a simple eddy viscos-
ity model was employed. From dimensional considera-
tions, the eddy viscosity can be related to a characteris-
tic length and velocity scale as νt ∼ u∗l∗. Considering
self-similar round jets, the eddy viscosity is determined as
νt =Cuclr1/2 which is a constant since ucl ∼ (x−x0)

−1 and
r1/2 ∼ (x− x0). Therefore, the eddy viscosity was mod-
elled to be constant and obtained by a fit of the Boussi-
nesq equation u′v′ = νtdū/dr to the experimentally ob-
tained Reynolds shear stress profile.

EXPERIMENTAL AND MODELLING RESULTS
In a previous study (Kuhn et al. (2018)) the self-similar

flow state of the experiments in the jet far field was analysed
and confirmed. Furthermore, a local spatial stability analy-
sis was performed and mode m = ±1 was found to be the
only unstable mode. The present study is focused on the
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helical m = 1 and additionally on the linearly stable modes.
Mode shapes from experiment, local stability analysis, and
resolvent analysis are compared for azimuthal wavenum-
bers m = 0 to m =±3. Higher azimuthal wavenumbers (up
to m = ±5) were also investigated but are not shown here
due to space limitations.

A qualitative comparison of mode shapes from experi-
ment, local analysis and resolvent analysis is shown in fig-
ure 3 for azimuthal wavenumbers m = 0 to m = 3 in a cross-
sectional plane of the jet. For each azimuthal wavenumber
m, the mode shapes of the axial (ũ), radial (ṽ) and tangential
(w̃) velocity components are displayed and the relative mag-
nitudes/eigenfunctions of the three components are shown
in the fourth column normalised by the maximum of the
axial component (|ũ|). The top row of each subfigure pic-
tures the empirical mode shapes which correspond to the
first SPOD mode. The middle row shows the eigenfunctions
from the local analysis and resolvent modes are displayed
on the bottom row. All modes are presented at the same self-
similar frequency of ω∗ = 2π f r1/2/ucl = 1. With respect to
the local analysis of mode m = 1, the selected frequency of
ω∗ = 1 is outside the unstable domain (0.02 ≤ ω∗ ≥ 0.33)
and, thus, in the decaying regime. In figure 3 a good agree-
ment of the two modelling approaches with the empirical
modes can be observed at the selected frequency for all
shown azimuthal wavenumbers. This agreement also ex-
tends to higher azimuthal wavenumbers (m = 4 and m = 5)
which are not shown here. Based on the relative amplitude
distribution in the fourth column, a closer match between
the optimal response mode and the experiments is observed
as opposed to the local analysis.

In order to obtain a more quantitative comparison be-
tween experimental results and modelling approaches, the
self-similar wavenumber k∗ = kr1/2, phase velocity c∗ph =

cph/ucl and wavelength λ ∗ = λ/r1/2 are compared for
mode m = 1. The wavenumber is determined for empir-
ical modes and optimal response modes by extracting the
phase angle φ(x) on the jet axis (based on the radial velocity
component v). Subsequently, the self-similar wavenumber
is calculated by k∗ = dφ

dx r1/2 and the phase velocity deter-
mined as cph = ω∗

k∗ . For the local analysis, the self-similar
wavenumber corresponds to the real part of the complex
stream-wise wavenumber α∗r . Figure 4 shows these three
quantities plotted against a self-similar axial coordinate x∗

which is defined as x∗ = (x− x0)
√

f
u0D . The self-similar

frequency ω∗ is indicated by the top x-axis in figure 4 and
is proportional to x∗ (ω∗ ∼ x∗2). By linking these two quan-
tities, the self-similarity of the flow allows for interchang-
ing a spatial coordinate with a frequency, i.e. the spatial
stream-wise evolution of a wave-packet at a fixed physical
frequency f can be interpreted as frequency-dependent evo-
lution at a fixed axial position and vice versa. Comparing
the wavenumber k∗ and phase velocity c∗ph in figure 4 from
the local and the resolvent analysis shows a slightly better
agreement of the resolvent analysis with the experiments
in a certain self-similar frequency range (0.2 < ω∗ < 2) (or
corresponding spatial domain). Below this range, a stronger
mismatch is observed which is most obvious in the phase
velocity c∗ph. We attribute this mismatch to the upstream
boundary condition in the resolvent analysis which influ-
ences the modal evolution and restricts the self-similarity of
the wave-packet as stated in the method section. At higher
self-similar frequencies (or further downstream) the results
from local analysis and resolvent analysis are identical.

For further quantitative comparison the alignment or
congruence between empirical mode shapes and modelling
results is computed as proposed by Cavalieri et al. (2013).

The alignment metric is defined by M=
〈ûω∗ ,m,ai=1,ω∗ ,m〉
‖ûω∗ ,m‖‖ai=1,ω∗ ,m‖ .

Here, ai=1,ω∗,m represents the first SPOD mode for az-
imuthal wavenumber m, and ûω∗,m are the eigenfunctions
from the local analysis or the optimal response mode from
the resolvent analysis. A value of M= 1 indicates a perfect
match between modelled and empirical modes and M = 0
corresponds to completely uncorrelated mode shapes. In
figure 1 the alignment of azimuthal modes m = 0 and m = 1
is shown in dependence on the self-similar wavenumber k∗.
The optimal response modes (dotted lines) show excellent
alignment with M > 0.95 over a wide wavenumber range.
Only at low wavenumbers the alignment decreases, espe-
cially for mode m= 1. Furthermore, at very high wavenum-
bers, the value of M drops substantially for mode m = 0
which can also be observed for m = 0 in the local analysis
(solid lines). The latter, however, decreases slowly with in-
creasing wavenumber k∗ as opposed to the sudden drop ob-
tained for the resolvent modes. In contrast to mode m = 0,
the values for M remain at a high and almost identical level
for both types of analyses at large wavenumbers k∗. Gener-
ally, the level of agreement between local analysis eigen-
functions and empirical modes is slightly lower than for
the optimal response modes, especially at low self-similar
wavenumbers.

To obtain an idea about what turbulent scales can be
modelled with good agreement by both approaches, a tur-
bulent wavenumber spectrum is shown in figure 1b. The
spectral density estimates are obtained from spatial Fourier
analysis on the jet axis employing self-similar scaling. The
data scaling and evaluation procedure is performed follow-
ing the method of Wanstrom (2009). By comparing the
alignment values from figure 1a to the spectral estimates
Ψu,u and Ψvv in figure 1b, a high degree of agreement can
be observed up into the inertial subrange (k∗ > 4) by both
types of analyses.

As a last step, the self-similar wave-packet extracted
from experiments are compared to the optimal response
mode in figure 5. In each subfigure, the bottom axis cor-
responds to a self-similar axial coordinate x∗ and the top
axis constitutes the link to the self-similar frequency ω∗.
The first row shows the wave-packet, the second row dis-
plays the magnitude and the bottom row the phase angle. In
terms of spatial mode shapes and phase angle a good agree-
ment is obtained. However, the overall amplitude which
determines the growth of the wave-packet, does not com-
pare well. The resolvent analysis over-predicts the growth
of the structures, which grow and decay too far upstream in
comparison with the experiments. A similar discrepancy is
observed in the linear stability analysis, where the growth
rate determines the point of maximum amplitude (neutral
point) at a self-similar frequency of ω∗n ≈ 0.33.

CONCLUSIONS
A local spatial stability analysis and global optimal re-

sponse analysis was performed based on the measured self-
similar velocity profiles in the far field of a round turbu-
lent jet. Although only mode m = 1 is found to be linearly
unstable in the local analysis, good agreement between the
empirical and modelled mode shapes is observed for mode
m = 0 to m = ±3 over a wide frequency range. The level
of agreement between optimal response modes and the ex-
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(a) Alignment of optimal response modes (dotted) and local
stability analysis (line) with first SPOD modes.

(b) Self-similar wavenumber spectrum determined on jet axis.

Figure 1: Alignment of modes m = 0 and m = 1 and
self-similar turbulent spectrum.

periments is slightly better as this type of analysis can ac-
count for effects of non-modal growth and non-parallel base
flow. The latter is of particular importance for low frequen-
cies, where the flow is highly non-parallel with respect to
the wavelength of the perturbation. For both modelling ap-
proaches the same eddy viscosity ansatz was included in the
analysis. Without an eddy viscosity, the resulting modes
were centred closely around the jet axis and, therewith, dif-
fered substantially from the empirical modes (not shown
in this study). Considering the optimal response modes, a
non self-similar behaviour can be observed which results
from the insufficient treatment of the inlet boundary con-
ditions and domain truncation, as well as the definition for
the norms which determine the gain function. Within a lo-
cal resolvent framework, these issues are avoided, however,
the non-parallelism of the flow would not be taken into ac-
count. Nonetheless, the results of the resolvent analysis re-
produce a considerable part of the turbulent fluctuations and
reach far into the inertial subrange. Almost over the en-
tire resolved frequency range, the optimal response modes
show an excellent agreement of > 95% with the empirical
modes, indicating that data assimilation based on mean ve-

locity fields is possible for a large proportion of the turbu-
lent spectrum.
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Figure 2: Schematic of the experimental setup

(a) m = 0 (b) m = 1

(c) m = 2 (d) m = 3

Figure 3: Cross-stream mode shapes from experiment (top row), local stability analysis (middle row), and resolvent
analysis (bottom row) for azimuthal wavenumbers m = 0 to m = 3. Modes are shown at a self-similar frequency
of ω∗ = 1.
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Figure 4: Comparison of (a) wavenumber k∗, α∗r , (b) phase velocity c∗ph, and (c) wavelength λ ∗ from experiment,
local LSA, and resolvent analysis for mode m = 1.

(a) Experiment, u (b) Experiment, v (c) Experiment, w

(d) Optimal response, u (e) Optimal response, v (f) Optimal response w

Figure 5: Streamwise wave-packets from experiment (top) and resolvent analysis (bottom) for axial (u), radial (v),
and tangential (w) velocity component.
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