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ABSTRACT
We present fully three-dimensional numerical simula-

tion results of shock-induced bubble collapse near a water-
gelatin interface. We study how the incoming pulse form
and its amplitude affect the dynamics of bubble collapse and
the subsequent gelatin penetration. Three immiscible fluids
(water, air, and gelatin) are considered, separated by a sharp
interface (level set). A conservative interface-interaction
model determines the exchange of momentum and energy.
A block-structured multiresolution scheme is used to adapt
the mesh to the evolving flow field.

Validation simulations (free-field bubble collapse, bub-
ble collapse near a rigid wall) show that our numerical
setup accurately predicts bubble collapse dynamics and
post-collapse wave dynamics. Two-dimensional simula-
tions assuming cylindrical symmetry reveal a quasi self-
similar collapse behavior of the bubble for each wave form.
The gelatin-penetration dynamics are self-similar, too, and
occur in three stages. The onset of the gelatin penetration is
governed by the post-shock momentum after the bubble col-
lapse. This is followed by a fast penetration upon the impact
of the water hammer. The penetration rate slows down once
interfacial instabilities grow at the water-gelatin interface.

Our three dimensional simulation results confirm
the two-dimensional cylindrically-symmetric results of a
single-bubble collapse. The collapse of two equi-sized bub-
bles results in a change of direction of the emitted water
hammers. For our setup, the water hammers are deflected in
the direction of the second bubble, and therefore impinge on
the gelatin interface obliquely. The actual direction depends
on the initial bubble separation distance and the stand-off
distance from the interface, and will be further investigated
in future work.

INTRODUCTION
The cavitation of microbubbles plays an increas-

ingly important role in therapeutic applications in modern
medicine (Stride et al., 2010). It occurs, for example, in
non-invasive methods for treating kidney stones, and has
been applied in approaches for improved cancer treatment
or drug delivery (Coussios & Roy, 2008). When the bubble
collapses, it emits a high-pressure shock wave and a high-
velocity water hammer, which interact with the nearby tis-
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sue. The emitted shock wave is thereby multiple orders of
magnitude stronger than the initial wave which initiated the
bubble collapse. Both effects can potentially rupture nearby
tissue. The exact mechanisms, however, are yet unclear and
motivate our numerical simulations.

Shock-induced bubble collapse near rigid and soft
walls has been extensively investigated with a variety of
numerical methods. For rigid walls, many investigations
have been limited to two dimensions (Johnsen & Colo-
nius, 2009, e.g.) or axisymmetric descriptions. Up to now,
only few detailed fully three-dimensional simulations have
been performed (Hawker & Ventikos, 2012, e.g.). For soft
walls, mainly axisymmetric problems have been consid-
ered to reduce the complexity of the setup (Freund et al.,
2009; Kobayashi et al., 2011; Pan et al., 2018). Also, only
few fully three-dimensional simulation results are available
(Coralic & Colonius, 2013).

In this work, we investigate bubble collapse dynam-
ics and gelatin interface deformation using fully three-
dimensional numerical simulations. The simulations are
performed with a block-structured multiresolution frame-
work using sharp interface capturing (level-set) and low-
dissipative shock capturing. Different from previous work
(Adami et al., 2016; Pan et al., 2018), we consider other
wave forms of the initial pressure pulse to better represent
realistic pulses from medical applications. Besides the ef-
fect of the pressure magnitude, we vary the form of the pres-
sure pulse and consider tensile parts after the actual positive
pulse. Finally, we simulate the collapse of two bubbles with
varying stand-off distances from the interface.

NUMERICAL MODEL
Governing Equations and Discretization

The compressible Euler equations

∂ρ

∂ t
+∇

T ·ρu = 0

∂ρu
∂ t

+∇
T · (u⊗u+ pI) = 0 (1)

∂ρe
∂ t

+∇
T · ((ρe+ p)u) = 0

govern the motion of each fluid phase. Here, ρ is the den-
sity, u the velocity vector, p the pressure, I the identity ten-
sor, and e the specific total energy. The set of equations is
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closed by the stiffened equation-of-state

p = (γ−1)ρe− γ p∞ , (2)

with the material parameters γ for the ratio of specific heats
and p∞ for the background pressure. We use γ = 1.4 and
p∞ = 0 for air, γ = 4.4 and p∞ = 6×108 Pa for water, and
γ = 4.04 and p∞ = 6.1×108 Pa for gelatin.

We apply a finite-volume discretization scheme on cu-
bic cells, with characteristic flux projection for the hyper-
bolic part (Roe, 1981) and global Lax-Friedrichs (GLF)
flux splitting. Fluxes at cell faces are reconstructed from
cell averages with the fifth-order WENO scheme (Jiang &
Shu, 1996). The basic idea of WENO schemes is to ap-
ply low-dissipative, high-order stencils in smooth flow re-
gions, while falling back to non-linear convex combinations
of lower-order stencils in regions with large gradients. The
governing equations are discretized in time with the third-
order Runge-Kutta Total Variation Diminishing (TVD) time
integration scheme (Gottlieb & Shu, 1998). The timestep
size is limited by the CFL-condition

∆t = CFL

(
∑

i

||ui + c||∞
∆xi

)−1

(3)

with the speed of sound c, and the cell width in i-direction
∆xi, i ∈ {1,2,3}. The CFL-number is set to CFL = 0.4.

We achieve efficient high-resolution simulations by ap-
plying a block-based multiresolution scheme, which adds
grid points in flow regions with steep local gradients
(Rossinelli et al., 2011; Han et al., 2014). It employs a
tree-based data structure where cell-averaged data (U) on
a refinement level l can be computed from level l+1, using
the projection operator Pl+1→l : U l+1→U l . Cell-averaged
data on level l + 1 can be estimated from level l, using
the prediction operator Pl→l+1 : U l → Ûl+1. The details
dl,i = U l,i−Ûl,i are the differences between predicted and
cell-averaged data, and are used to determine the required
resolution in space to achieve a given accuracy (Harten,
1995). If the details are larger than a pre-defined accuracy
threshold, grid points are added. If the details are smaller,
the current grid is sufficient to achieve the desired accu-
racy. For the three-dimensional simulations investigated
in this work, an accuracy threshold of the relative error
εl=lmax = 10−2 on the finest level lmax = 3 was found to be
sufficient. A local timestepping approach further improves
overall efficiency, by integrating each refinement level with
its level-dependent timestep size. Accuracy and stability
are maintained by adapting the timestep size after each full
Runge-Kutta step on the finest level (Kaiser et al., 2019).

Sharp-interface Model
A level-set function φ is employed to capture the fluid-

fluid interfaces. φ describes the signed distance between the
cell center and the interface (|∇φ |= 1), and the zero-level-
set (φ = 0) represents the interface. We solve the advection
equation

∂φ

∂ t
+uφ ·∇φ = 0 (4)

to propagate the level-set field in time. The level-set ad-
vection velocity uφ is obtained from the two-material Rie-
mann problem at the interface, which is solved with a lin-
earized Riemann solver (Saurel et al., 2003). The signed-
distance property |∇φ |= 1 is potentially violated when ad-
vecting the level-set field. Therefore, the level-set field is
re-initialized after every full Runge-Kutta step by iterating
the equation

∂φ

∂τ
+ sign(φ0)(|∇φ |−1) = 0 (5)

in a pseudo time τ to a steady state (Sussman et al., 1994).
Cell-face fluxes close to the interface are reconstructed

by introducing ghost cells across the interface (Fedkiw
et al., 1999). Ghost-cell states are obtained using a zeroth-
order extrapolation of prime states q = (ρ,u, p)T from the
real fluid along the interface-normal vector nΓ = ∇φ/|∇φ |
by iterating the equation

∂q
∂τ
−nΓ ·∇q = 0 (6)

to a steady state. Eq. (6) is solved for each fluid sepa-
rately, and thus maintains the sharp-interface property of
the method.

The exchange of momentum and energy across the in-
terface is modeled by explicit interface exchange terms (Hu
et al., 2006). They are applied in each cell that is cut by the
interface, and use the interface pressure and velocity from
the two-material Riemann problem. Mass transfer across
the interface is neglected.
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Figure 1. Pulse of a Dornier HM3 lithotripter (Church,
1989; Johnsen & Colonius, 2009).

Pulse Waves and Simulation Setup
In this work, we compare the effect of two differ-

ent waveforms on the collapse process and the subsequent
gelatin deformation. Waveform 1 (WF1) is a planar shock
wave, and waveform 2 (WF2) models the pulse of a Dornier
HM3 lithotripter as

p(y) = p0 +2pse−αt cos(ωt +π/3) (7)

with α = 9.1×105 1/s and ω = 2π · 83.3kHz (Church,
1989; Johnsen & Colonius, 2009). Post-shock pressure and
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velocity fields follow from the Rankine-Hugoniot condi-
tions. The pulse form of eq. (7) is shown in Fig. 1.
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Figure 2. Initial configuration of the single-bubble simu-
lations.

The initial condition is shown in Fig. 2 for a single-
bubble simulation. The wave is initially located in the liq-
uid far field, and impinges on the bubble at t = 0. The bub-
ble has an initial diameter of R0 = 100µm, and the stand-
off distance between the bubble and the gelatin interface is
H/R0 = 2.0. Fig. 3 shows the setup for a multi-bubble sim-
ulation. The lateral distance between the two bubble cen-
ters is D/R0 = 2.5. The stand-off distance to the interface
is H/R0 = 2 for the downstream bubble, and the upstream
bubble is shifted by ∆H/R0 = 1.
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Figure 3. Initial configuration of the multi-bubble simula-
tion.

VALIDATION
Rayleigh Collapse

We simulate the symmetric collapse of a spherical,
non-condensable gas bubble in water and compare its col-
lapse time to the theory of Rayleigh (1917). The Rayleigh
collapse time tR

c depends on the initial bubble radius R0, the
liquid density ρl , and the pressure inside the bubble pg and
in the liquid pl . It is given by

tR
c ≈ 0.915R0

√
ρl

pl − pg
(8)

(Brennen, 1995). We choose a quasi three-dimensional
setup, and simulate only one half of the domain, assum-
ing cylindrical symmetry. The bubble with radius R0 con-
sists of air (γ = 1.4) at atmospheric conditions (pg = 105 Pa,
ρg = 1.2kg/m3). We vary the pressure in the surrounding
water (γ = 4.4, p∞ = 6×108 Pa) to investigate the accuracy

of our setup. To avoid nonphysical initial conditions, the
initial pressure field in the liquid satisfies the Laplace equa-
tion ∆pl = 0. The density field follows from the Rankine-
Hugoniot conditions, assuming ρ = 998.6kg/m3 at ambi-
ent conditions. We choose a domain size of [40R0×40R0].

0

5

10

15

20

0 200 400 600 800 1000 1200

t c
/(

R
0/

c l
)

pl/pg

∼
√

ρl/(pl− pg)
R0/∆x = 50

R0/∆x = 100

Figure 4. Normalized Rayleigh collapse time τc/(R0/cl)

for varying pressure rations pl/pg for grid resolutions of
R0/∆x≈ 50 (

⊙
) and R0/∆x≈ 100 (4).

Fig. 4 shows the analytically expected behavior of the
Rayleigh collapse time, and numerical solutions for two dif-
ferent resolutions R0/∆x ≈ {50,100}, which are compara-
ble to that used in the three-dimensional simulations. Re-
sults exhibit no grid dependency, and collapse times de-
crease with ∼

√
ρl/(pl − pg) as expected from literature.

An offset of approximately 5% from the analytical results
(eq. (8)) is observed in agreement with results from lit-
erature. In the following, we normalize our results with
the free-field collapse time obtained from our simulation
tS
c ≈ 0.973R0

√
ρl/(pl − pg).

Bubble Collapse Near a Wall
As second validation case, we simulate the shock-

induced collapse of a non-condensable gas bubble in water
near a rigid wall to show that our model accurately repro-
duces post-collapse wave patterns. We use the simulation
domain shown in Fig. 2, but replace the gelatin phase by a
rigid wall with infinite acoustic impedance. The pressure-
pulse profile is taken from eq. (7), with a pulse strength of
ps = 35MPa.

For this setup, Johnsen & Colonius (2009) have shown
that the radial maximum pressure distribution along the wall
follows

pw

ps

(
r

R0

)
=

c1√
H2

c +(r/R0)
2
+ c2 (9)

with the normalized collapse distance Hc, and calibration
parameters c1 and c2. A time series of radial pressure pro-
files along the wall is given in Fig. 5, together with eq. (9)
using Hc = 1.5, c1 = 0.27, and c2 = 0.022. The time differ-
ence between two radial pressure profiles is approximately
∆t ≈ 0.07tS

c . The temporal behavior of the maximum wall
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pulse shock

Figure 6. Numerical schlieren images of the two-dimensional simulation. The left half of each figure shows results for a
ps = 35MPa pulse wave, the right half for a shock wave of same strength. Flow direction is from bottom to top. Time instants
are t/tS

c = {0,0.95,1.24,1.94}.
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Figure 5. Normalized wall pressure in radial direction:
empirical solution (solid), and numerical data (dotted), with
∆t ≈ 0.07tS

c between two subsequent numerical profiles.

pressure agrees well with the empirical equation. It repro-
duces both the maximum-pressure peak near the centerline
and the following radial decay.

TWO-DIMENSIONAL SIMULATIONS
We present two-dimensional simulation results for

bubble collapse and analyze the penetration depth of the
gelatin interface. We simulate the domain as shown in Fig.
2.

Numerical schlieren images for a lithotripter pulse (left
half) and a shock wave (right half) with identical strength
ps = 35MPa are shown in Fig. 6, at instants t/tS

c =
{0,0.95,1.24,1.94}. The wave interacts with the bubble at
t/tS

c = 0. The bubble collapses faster after shock wave ex-
posure (t/tS

c = 0.95) due to the higher energy density of the
shock. Consequently, also the water hammer and the emit-
ted shock wave occur earlier. The wave then propagates to-
wards the gelatin interface, where it is completely transmit-
ted since acoustical impedances of water and gelatin match
for the chosen material parameters (t/tS

c = 1.24). The post-
shock conditions cause the gelatin interface to migrate away
from the bubble. The water hammer then penetrates the
gelatin interface and leads to a strong deformation near the
centerline (t/tS

c = 1.94).
Fig. 7 shows the equivalent bubble radius for wave

forms 1 and 2, at different pulse strengths of 35 MPa and
70 MPa. The temporal behavior of the equivalent bubble ra-
dius yields quasi self-similar behavior for each waveform.
For H/R0 = 2, we obtain the relation tc ≈ 1.003 · tS

c for
the shock wave induced collapse, and tc ≈ 1.077 · tS

c for the
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Figure 7. Equivalent bubble radius for different pulse (p)
and shock (s) waves and strengths.
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Figure 8. Penetration depth of the gelatin interface for dif-
ferent pulse (p) and shock (s) waves and strengths.

pulse wave induced collapse. Note, no rebound is visible,
since the bubble becomes underresolved during the collapse
and is removed explicitely as underresolved structure by the
numerical method. The non-dimensional penetration depth
is shown in Fig. 8. Here, tp denotes the onset of penetraton,
i.e. when the interface starts moving in flow direction af-
ter the impact of the shock wave emitted by the collapsing
bubble (Pan et al., 2018). Three distinct regimes are ob-
served, caused by different effects of the collapsing bubble.
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Figure 9. Isosurfaces and numerical schlieren images on the central x-y plane of a single collapsing bubble at t/tS
c =

{0.01,0.64,1.24,1.94}, simulated with a fully three-dimensional setup. Shock direction is from left to right. The bubble
is shown in dark blue. The color scale of the gelatin interface indicates the displacement in shock direction.

Figure 10. Isosurfaces and numerical schlieren images on the central x-y plane of two collapsing bubbles at t/tS
c =

{0.01,1.21,1.91}. Shock direction is from left to right. The bubbles are shown in dark blue. The color scale of the gelatin
interface indicates the displacement in shock direction.

The first, slow penetration regime results from the induced
velocity behind the shock wave, which is emitted by the
collapsing bubble. The water hammer impacts afterwards,
and drastically increases the penetration rate. It slows down
again once interfacial instabilities at the water-gelatin inter-
face grow, which is the third growth regime. The second
and third regime have already been reported by Pan et al.
(2018), who investigated the collapse of a bubble without
stand-off distance to the interface. For an attached bubble,
the impact of the emitted shock wave and the water ham-
mer coincide, thus the first scaling regime of our study is
suppressed.

THREE-DIMENSIONAL SIMULATIONS
Single-bubble collapse

As validation, we repeat the two-dimensional simula-
tion for a 70MPa shock wave considering a fully three-
dimensional setup.

Isosurfaces of the bubble and the gelatin interface,
and numerical schlieren images in the central x-y plane are
shown in Fig. 9, at instants t/tS

c = {0.01,0.64,1.24,1.94}.
The bubble is shown in dark blue, the color scheme of the
gelatin interface indicates its displacement. The wave im-
pinges on the bubble at t/tS

c = 0, which initiates the collapse
due to the sudden increase in the ambient pressure. While
the bubble collapses, the gelatin interface is pulled towards
the bubble (t/tS

c = 0.64). Once the bubble has collapsed, the
interface moves in opposite direction due to the post-shock
velocity (t/tS

c = 1.24). Then, the water hammer penetrates
the gelatin interface (t/tS

c = 1.94). This behavior is in good
qualitative agreement with our two-dimensional results.

Multi-bubble collapse

Finally, we investigate the collapse of two equi-sized
bubbles near the gelatin interface. We extend the work of
Pan et al. (2018) by breaking cylindrical symmetry and add
a second bubble near the gelatin interface. The setup is
sketched in Fig. 3.

Isosurfaces of the bubble and the gelatin interface,
and numerical schlieren images in the central x-y plane are
shown in Fig. 9, at instants t/tS

c = {0.01,1.21,1.91}. The
bubbles are shown in dark blue, the color scheme on the
gelatin interface indicates its displacement. For a single-
bubble collapse, the circumferential pressure distribution
around each bubble is symmetric to the centerline. For the
multi-bubble collapse investigated here, the additional bub-
ble breaks this symmetry (t/tS

c = 1.21). Therefore the water
hammer generated by the collapse of the upstream bubble is
deflected towards the downstream bubble. As the upstream
bubble collapses earlier, the emitted shock wave propagates
towards the downstream bubble, which is not yet collapsed.
For the investigated distance between the two bubbles, this
wave reaches the location of the downstream bubble only
after the collapse, and therefore does not influence the col-
lapse process itself. However, also the circumferential pres-
sure field of the downstream bubble is influenced by the
upstream bubble, which is why the water hammer emitted
after the collapse is deflected towards the upstream bubble.

Considering the movement of the gelatin interface, an
asymmetric, ellipsoidal distribution is observed at t/tS

c =
1.21. The maximum deflection is located near the down-
stream bubble. After both bubbles have collapsed, the water
hammers obliquely penetrate the gelatin interface (t/tS

c =
1.91).

5



11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11)
Southampton, UK, July 30 to August 2, 2019

CONCLUSION
We have presented two- and three-dimensional simula-

tion results of bubble-collapse scenarios near a tissue surro-
gate. We validated our setup with analytical and literature
results, and performed simulations of the collapse of multi-
ple bubbles near a soft wall (gelatin).

Our simulations reveal a quasi self-similar behavior of
the gelatin penetration for single-bubble collapse with three
distinct regimes. An initial slow penetration rate after the
impact of the spherical shock wave is followed by a strong
increase after the impact of the water hammer. The growth
rate changes again once interfacial instabilities at the water-
gelatin interface grow.

Three dimensional simulations of the collapse of two
equi-sized gas bubbles were performed. The direction of the
emitted water hammer is deflected compared to the single-
bubble collapse, as the pressure field around each bubble is
locally disturbed by the second bubble. The water hammers
of the two bubbles therefore penetrate the gelatin obliquely,
and potentially interact further downstream. For our setup,
the collapse of the downstream bubble is not altered by the
shock wave emitted after the upstream bubble collapsed.
For a smaller distance, this wave potentially changes the
collapse process of the downstream bubble, but further anal-
yses are required.

The interaction between the two bubbles strongly af-
fects the gelatin penetration. It is essential for a compre-
hensive understanding of the penetration process in real-life
applications, where bubble clouds have to be considered.
In addition, a more accurate representation of the gelatin
phase is currently developed, taking into account for non-
Newtonian material behavior.
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