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ABSTRACT
In  the  present  study,  a  data-driven  method  for  the

construction of reduced order model (ROM) for complex flows is
proposed.  It  uses  the  proper  orthogonal  decomposition  (POD)
modes  as  the  orthogonal  basis  and  the  dynamic  mode
decomposition (DMD) method to obtain linear equations for the
temporal evolution coefficients of the modes. This method is in
no need of the governing equations of the flows involved and
saves the effort to derive the projected equations and prove their
consistency,  convergence  and  stability  as  required  by  the
conventional  Galerkin  projection  method,  which  has  been
successfully  applied to  incompressible  flows but  is  hard to  be
extended to the compressible flows. Using the sparsity promoting
algorithm, the dimension of the ROM could be further reduced to
the minimum. The ROMs of the bypass transition of supersonic
boundary layers at  Ma=2.25 are constructed with the proposed
data-driven method. The temporal evolutions of the POD modes
show  good  agreement  with  that  obtained  by  direct  numerical
simulations.  The  ROM  for  bypass  transition  is  further
investigated as a dynamical system. It is shown that the stability
of  the ROM dynamical  system is  determined by its Lyapunov
dimension, which could be used as an indicator to determine the
ROM dimension.

INTRODUCTION
Modal  decomposition  methods,  such  as  proper  orthogonal

decomposition (POD) and dynamic mode decomposition (DMD),
are able to capture the important flow structures. Based on these
spatial  modes,  the  reduced  order  model  (ROM)  can  be
constructed to approach the temporal evolution of the flow field.
ROM is a  useful and powerful  tool for  exploring the physical
mechanisms,  predicting  and  designing  control  schemes  of
complex  flows  by  constructing  a  finite-dimensional  dynamical
system for the flows (Rowley & Dawson 2017). The motivation
of the present research is to construct the ROMs for supersonic
boundary layer transition which involves very complex physical
processes and leaves many open questions concerning transition
prediction and control.

The POD-Galerkin method has been successfully applied to
the  construction  of  ROMs  for  various  incompressible  flows
(Holmes,  2012).  When  it  comes  to  the  compressible  viscous
flows, the ROM is difficult to be obtained with the traditional

POD-Galerkin  method  because  of  the  complexity  of  the
governing  equations.  The  application  to  compressible  viscous
flows was firstly proposed and performed by  Gloerfelt  (2008).
However,  the ODEs thus obtained are unstable,  leading to  the
exponential  growth  of  temporal  coefficients.  Although various
modifications  were  proposed,  such  as  taking  into  account  the
viscous  dissipation  of  the  truncated  higher  modes  by  eddy
viscosity,  the  parameters  involved  were  usually  set  artificially
and  empirically.  Other  factors  such  as  inner  product  and
boundary  conditions  (Kalashnikova  et  al,  2014)  could  also
influence  the  stability  of  ROM.  Choosing  the  factors  above
properly,  the  application  to  laminar  subsonic  flows  is  so  far
successful,  while  for  nonlinear  flows,  the  stability  and
convergence are still challenging. 

DMD  is  a  data-driven  method  for  reduced  order
representation, which can extract spatial modes as well as their
frequencies  and growth rates  (Schmid 2010).  Although it  is  a
powerful method to construct ROM, DMD has the setback that
its  modes  are  not  orthogonal,  which  makes  it  difficult  to
investigate the interaction between different modes. 

In the present study, we proposed a purely data-driven ROM
construction method based on the combination of POD, DMD
and sparsity-promoting algorithm (Jovanovic et al. 2014): POD is
used to obtain the orthogonal basis, DMD to obtain its temporal
evolution  and  sparsity-promoting  DMD  as  the  dimension
truncation technique. In this method, the governing equations are
not  involved  and  the  problems  related  to  the  projection  of
governing equations disappear. This method can be easily applied
to  compressible  flows  as  well  as  incompressible  flows,
overcoming  the  difficulties  encountered  by  the  conventional
POD-Galerkin  method.  In  the  present  study,  the  supersonic
boundary layer bypass transition at Mach number  Ma = 2.25 is
considered,  and the ROMs are  constructed using the proposed
construction method to give a longer time prediction of the flow
fields.

Principle and Algorithm
The principle of the proposed method will be stated under

each step of the algorithm:
(1) Write the data samples with a same time interval obtained by
numerical  simulations  or  experimental  measurements  into  the
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form of matrices  V N 1 ,V N 2,  each columns of which contains

flow quantity of a temporal instantaneous flow field.
(2) Perform SVD via equation to the matrix 

V N 1=UT Σ ' V   (1)

to obtain the orthogonal basis U  ( POD modes) and the singular

values Σ' . The energy of each mode is obtained by Σ=√N Σ '

according to POD.
(3) Perform DMD.

DMD performs modal decomposition by assuming that the
time interval t is small enough so that the two matrices can be

related  by  linear  mapping   V N 2=A V N 1, which  A is  the

evolving matrix of the dynamical system. Substituting the SVD
into the linear  mapping,  we have the projected version of  the
evolving matrix 

A'
=U T AU =UT V N 2V Σ−1 (2)

 Eigenvalues and eigenvectors of A 'are obtained by solving

eigenvalue problem A' W=WΛ , where Λ is a diagonal matrix

with eigenvalues (μi ,i=1,2,…, N ) on its diagonal line, and

W is  the  matrix  whose  columns  are  eigenvectors

w i(i=1,2 , … ,N ).

(4)  Truncate  A '  to  lower  dimensions  according  to  the  SP
algorithm results,  and obtain the  temporal  evolution  matrix  of
discrete or continous ROM equations.

The present data-driven ROM construction method employs
POD modes as  the orthogonal  basis  and DMD eigenvalues to
represent  the temporal evolution of the modes.  With the POD
modes,  each temporal  flow field  can be expressed  as  a  linear
combination of the POD modes: 

v j=∑
i=1

N

bij ( Δt ) ui ,( j=1 ,…, N ) (3)

Substituting the linear expansions into the linear mapping, we

get  UB2=AUB1 ( where  B1 and  B2are  the  matrices  of

temporal evolving coefficients.), which can be further written as

 B2=UT AUB1=A ' B (4)

indicating that the temporal evolving matrix A '  is the same
as the matrix defined in DMD. In this sense, temporal evolution

of POD modes can be obtained via the DMD eigenvalues and
eigenvectors.  Therefore,  the  discrete  form  of  the  temporal

evolution equation can be expressed as b (t +Δt )=A ' b (t). It

can be further expressed as ODEs, where continuous temporal
coefficients can be obtained:

 
d b (t )

d t
=Ac b ( t ) (5)

The  relation  between  Ac and  A could  be  deduct-ed  by

simple math, which will be shown in our full paper.
(5)  Solve  the  ROM  equations  numerically  to  give  temporal
evolution of POD orthogonal modes.

With a group of initial values, the temporal coefficients can
be obtained via the above linear mapping. The formula can be
further  expressed  as  ODEs,  where  continuous  temporal
coefficients  can  be  obtained.  They  can  be  solved  by  classical
algorithms such as the Runge-Kutta method. 

APPLICATION TO SUPERSONIC BOUNDARY LAYER 
TRANSITION

We  construct  the  ROM  for  the  bypass  transition  in
supersonic boundary layer with the freestream Reynolds number
Re=635,000/inch,  Mach  number  Ma=2.25  and  temperature
169.0K. DNS  of supersonic boundary layer transition for ideal
gas and Newtonian fluid is performed with HOAM-OPENCFD-
1.10.4 developed by Li et al (2009). The conservative governing
equa-tions  are  solved  numerically  with  high-order  finite
difference  method. All  the  flow  quantities  are  non-
dimensionalized  by  the  free  stream  density,  velocity  and
temperature,  and the characteri-stic length is 1 inch.  The flow
parameters  are  set  according  to  Li  et  al  (2009).  The  periodic
blowing and suction disturbance is introduced at the wall in the
region of x=4.0~4.5 to induce transition, the frequencies of which
are 3.982 and 7.854, each with spanwise wavenumbers of 35.9
and 71.8, which are linearly unstable according to linear stability
analysis.  The disturbance amplitudes are both set  to be 0.004.
The vortex structure of the transitionnal region is shown with the
second invariant of velocity gradient tensor  Q colored by wall-
normal (y) coordinate in Fig. 1, and the skin friction coefficient is
shown in Fig. 2. In the early transitional region, the streamwise
elongated vortex structures  are  obvious,  and further  developed
into trivial and less organized structures, which is believed to be
the end of transition.  The skin friction in streamwise direction
shows that the transition ends at x=7.5. Therefore, subzone in the
range of  x=5.0-6.5 is selected in the analysis since  x=6.5 is the
beginning position of transition.
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Fig. 1 Vortex structure (Q=2.0) in transition area

Fig. 2 Skin friction coefficient 

The  fluctuation  of  velocity  components,  density  and
temperature are used to constructing the ROM. The time interval

 Δt  ¿0.02 and 201 temporal samples in total are included. The
en-ergy  of  POD modes  are  shown in  Fig.  3(a),  and  the  total
energy loss of the first i modes are shown in Fig. 3(b) defined as
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 The mode energy decreases slowly with the increase of the
mode  number,  indicating  the  existence  of  complicated  flow
structures in the field caused by nonlinear effects. If the ROM
could capture 90% of the total energy, 13 modes are needed (as
shown in Fig. 3 (b)). DMD frequency spectrum is shown in Fig. 3
(c), the modes selected with SP algorithm are shown with solid
circles. The energy of the low-frequency modes is higher than
that of the high-frequency modes (Fig. 3 (c)). The results of SP
algorithm indicate that 19 modes are need-ed to capture the most
important structures in the flow field. As shown in Fig. 3 (d), 19
modes are able to capture 88% of the total energy. 
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Fig. 3 Energy of POD modes (a), total energy loss of the first i modes (b), DMD frequency spectrum (c) and energy loss of a certain
number of modes (d), solid circles in (c) are modes selected by SP algorithm
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The vortical structures of the first four POD modes with the
highest energy are shown in Fig. 4 by the iso-surfaces of Q, the
second invariant of the velocity gradient tensor. The structures
are mainly streamwise elongated vortices. They become stronger
downstream,  and  correspondingly,  the  velocity  disturbance
around  the  vortices  are  more  significant  as  indicated  by  the
contours of streamwise disturbance velocity u. With the increase
of  the  mode  number  (decrease  of  mode  energy),  the  vortex
structures become smaller and appear further downstream. 

We select 11, 15 and 21 modes respectively to construct the
ROMs,  in  order  to  examine  the  influence  of  the  number  of
modes. (The mode number provided by SP algorithm is used as
reference,  not  a  criterion,  so  it  does  not  need  to  be  checked
whether 19 is the precise number of modes to establish a suitable

ROM.) The temporal coefficients for each mode are obtained by
solving  equation.  The results  are  compared with  the  projected
DNS data,  as shown in Fig.  5.  The red symbols  represent  the
projected DNS data in the time range where POD and DMD is
performed (hereinafter referred to as TRI), and the green symbols
represent those beyond the time range (hereinafter referred to as
TRO). For the temporal evolution of the lower modes 2~8, all the
ROMs can yield an accurate prediction both in TRI and TRO.
But for mode 10, obvious discrepancy can be observed between
the result  predicted by the ROM with 11 modes and the DNS
data. Increasing the number of modes included in the ROM, the
accuracy for mode 10 can be enhanced as shown by Fig.5 (II-e)
and (III-e).

Fig.4 Iso-surfaces of Q=0.0001 colored by u. (a-d) mode 2, 4, 6, and 8 respectively.

   

  
  
 

4



11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11)
Southampton, UK, July 30 to August 2, 2019

Fig. 5 Temporal coefficients of mode  2 (a) and mode 10 (b), with 11 (I), 15 (II) and 21 (III) modes. — —△  projected DNS data in the
time range that POD and DMD is performed, —□— beyond the time range that POD and DMD is performed, ——ROM

Fig. 6 Error of ROMs. Red dashed line: 11 modes; green dashed-dot line: 15 modes; black solid line: 21 modes

  

  

In order to quantify the accuracy of the ROMs, we define the
averaged relative error as 

err (t )=(∑
i=1

N

|ai (t )−api (t )|
2
/ N )

1
2
/(∑

i=1

N

api (t )
2)

1/2

where  N is  the  number  of  modes,  and  a pi represents  the

projected DNS data on POD mode  i.  As shown in Fig.  6,  the
relative error is less than 3% in all cases, and generally decreases
when more modes are used in the ROMs. Notably, the relative
error with 15 modes is larger than that with 11 modes at some
time instants, especially near the peaks and in TRO region. This
is  caused by the inaccurate  prediction of  the higher  modes as
discussed above.

Flow reconstruction is performed to further verify the ROMs,
as is shown in Fig. 7. The temporally evolving POD modes are
added  together  to  obtain  the  predicted  flow  fields.  The
streamwise velocity  u given by the ROMs with 11,  15 and 21
modes  is  compared  with  the  original  DNS data  at  2  selected
points  at  x=5.275,  6.058,  y=0.01,  z=0.175 inside the boundary
layer and at the center in spanwise direction. The ROM with 11
modes loses its accuracy and tends to increase sharply at x=6.058,

while  for  the  ROMs  with  15  and  21  modes  the  error  is
exterminated. The reason could be found when it is studied as a
dynamical system. For the ROM with 11 modes, the summation

of  the  Lyapunov  exponent  is  still  positive  (3.645×10−3),

indicating the system is unstable,  while  for  the ROM with 15
modes, the summation of the Lyapunov exponent is negative (

−9.412 ×10−2), like the ROM with 21 modes shown above.

This  suggests  that  the  summation  of  the  Lyapunov  exponents
could  be  used  as  an  indicator  for  the  truncation  of  the  ROM
dimension.  In  order  to  obtain  a  temporally  stable  ROM,  the
summation  of  the  Lyapunov exponents  should  be negative.  In
other words, the dimension of the ROM should not be less than
its Lyapunov dimension, otherwise the system is unstable.

CONCLUSIONS
In the present study,  we proposed a data-driven method to

construct ROMs for complex flows. It uses the POD modes as the
orthogonal basis and obtains the time evolution ODEs by DMD.
This  ROM  construction  method  is  purely  data  driven  and
therefore  can be easily applied to  flows governed by complex
equations such as compressible flows. 

The  ROMs  of  the  bypass  transition  induced  by  nonlinear
disturbances in supersonic boundary layer at Ma=2.25 were built
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other words, the dimension of the ROM should not be less than
its Lyapunov dimension, otherwise the system is unstable.

CONCLUSIONS
In the present study,  we proposed a data-driven method to

construct ROMs for complex flows. It uses the POD modes as the
orthogonal basis and obtains the time evolution ODEs by DMD.
This  ROM  construction  method  is  purely  data  driven  and
therefore  can be easily applied to  flows governed by complex
equations such as compressible flows. 

The  ROMs  of  the  bypass  transition  induced  by  nonlinear
disturbances in supersonic boundary layer at Ma=2.25 were built
using  the  proposed  method.  By  comparing  the  temporal
coefficients  of  POD  modes  and  the  reconstructed  flow  fields
given by the ROMs with those given by DNS data confirms the
ability  and  accuracy  of  the  present  method.  The  influence  of
ROM dimension on the predicted flow was further examined by
checking the time history of the streamwise velocity u at different
streamwise  locations  inside  the  boundary  layer  in  the  bypass
transition case. It was found that downstream near the transition
region,  more modes are needed to give a satisfying prediction
because of the intensified complexity of the flow. The Lyapunov
exponents  and  Lyapunov  dimension  were  calculated  to
quantitatively  measure  the  complexity  of  the  ROM dynamical
system. It was observed that the ROM of the bypass transitional
boundary  layer  is  a  dissipative  dynamical  system  with  high
Lyapunov dimension, and its stability can be determined by the
Lyapunov dimension, which can be used to determine the ROM
dimension. 

The present method was also applied to the bypass transition
of hypersonic boundary layer at Ma=6 (not shown here). Because
the disturbance frequencies differ in several orders in hypersonic
flow,  the  data  samples  with  longer  time  span  and  finer  time
interval are needed. Due to the limitation of the computational
resources, the ROM we obtained currently can only provide an

accurate  prediction  for  the  short-term  behavior.  A  probable
remedy for the present ROM construction method is to use the
multi-resolution dynamic mode decomposition method proposed
by Kutz et al. [20], which is now under our research.
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