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AABBSSTTRRAACCTT  

The energy transfer in the scale space was examined using 
the DNS data of turbulent channel flow. The inverse cascade of 
the spanwise part of turbulent energy was seen near the wall. In 
order to understand the flow structure associated with the 
inverse cascade, the conditional average of velocity field was 
evaluated in relation to the negative value of the energy 
production term. Profiles of the conditionally averaged 
quantities showed a large streamwise vortex near the region of 
the negative production and a small vortex located upstream. It 
is suggested that the rotation of the former main vortex is 
driven by the SGS effect under the influence of the latter 
upstream vortex. 

 
 

IINNTTRROODDUUCCTTIIOONN  
In order to obtain a better understanding of inhomogeneous 

turbulent flow, it must be useful to examine the energy transfer 
in the scale space. The scale space for inhomogeneous 
turbulence corresponds to the wavenumber space for 
homogeneous turbulence. The second-order velocity structure 
function 〈δui

2 〉  ( δui = ′ui (x + r)− ′ui (x) ) can be considered the 
energy in the scale space; its transfer has been investigated in 
detail in the turbulent channel flow (Cimarelli et al. 2013, 
Cimarelli et al. 2016). Using the two-point velocity correlation 
Qii(r)  (= 〈 ′ui(x) ′ui(x + r)〉) , the author proposed the energy 
density in the scale space (Hamba 2015, 2018). We also 
examined the energy density in the turbulent channel flow and 
investigated the energy transfer in the scale space. The inverse 
energy cascade, or the transfer from the small to large scales, 
was seen in some part of the scale space. However, it is not 
clear what kind of flow structure is accompanied with the 
inverse cascade. 

The vortex structure near the wall in wall-bounded flows 
has been studied in detail. For example, hair-pin vortex 
structures have been examined in experiment and numerical 
simulations. Not only the vortex structures were examined in 
the snapshot of turbulent field, but also the structures were 
extracted using the conditional average corresponding to the 
eject phenomena (ex. Adrian 2007). The self-sustainment 
mechanisms of the streamwise vortices were also proposed 
(Waleffe 1997). The mechanism consists of three processes: 

the streamwise vortices create the streak structure with the aid 
of the mean shear, the instability of the streak structure 
generates three-dimensional velocity fluctuations, and the 
nonlinear effects of the three-dimensional fluctuations generate 
the streamwise vortices. From the energy point of view, the 
first and second processes correspond to the forward energy 
cascade whereas the third one to the inverse cascade.  

In this study, we focus on the inverse cascade seen near the 
wall in the turbulent channel flow and investigate the flow 
structure associated with the cascade. In particular, we extract 
the vortex structure by using the conditional average 
corresponding to the negative energy production in order to 
examine the relationship between the energy cascade and the 
vortex structure near the wall in channel flow. 

 
 

EENNEERRGGYY  TTRRAANNSSFFEERR  IINN  SSCCAALLEE  SSPPAACCEE  
Using the DNS data of channel flow we examine the 

energy transfer in the scale space and vortex structures. The 
DNS was carried out as follows. The Reynolds number of the 
channel flow is Reτ = 590  and computational domain is 
Lx × Ly × Lz = 2π × 2 × π . The number of grid points is 
Nx ×Ny ×Nz = 1024 ×192 ×1024 . Physical quantities are 
nondimensionalized by the friction velocity uτ  and the channel 
half width Ly / 2 . The periodic boundary conditions are used 
in the streamwise (x) and spanwise (z) directions and the no-
slip conditions are imposed at the wall at y = −1,1 . We use the 
fourth-order finite-difference scheme in the x and z directions, 
the second-order one in the y direction, and the Adams-
Bashforth method for time marching. Ensemble average 	〈	〉  is 
taken over x-z plane and time period 70 ≤ t ≤100 . 

Using the two-point velocity correlation Qij(rr) , the energy 
density in the scale space in the streamwise direction can be 
defined as follows: 

 Eαα (y,rx ) = − ∂
∂rx
Eαα

> (y,rx )   (1) 

where 

 Eij
>(y,rx ) = dξx−∞

∞

∫ Qij(y,ξx )G(ξx , rx )   (2) 

 G(ξ, r) = 1
2πr

exp − ξ2

2r2
⎛
⎝⎜

⎞
⎠⎟

  (3) 
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Summation convention is adopted for repeated indices except 
for the Greek ones.  

The energy transfer term in the scale space appearing in the 
transport equation for the energy density Eαα (y,rx )  is given by 
Παα (y,rx )

= − dξx−∞

∞

∫ G(ξx , rx )
∂
∂ξk

〈( ′uk (xx + ξξ)− ′uk (xx)) ′uα (xx) ′uα (xx + ξξ)〉
 (4) 

Among the three parts of the energy, the transfer of the 
streamwise part, Πxx , and that of the wall-normal part, Πyy , 
are negative, representing the forward cascade from the large to 
small scales. In contrast, the transfer of the spanwise part, Πzz , 
shows positive values near the wall as plotted in Fig. 1. This 
positive value represents the inverse cascade; that is, the flux of 
the energy Ezz  from the small to large scales. 

It was known that the energy Eαα
>  given by (2) is equal to 

the grid scale (GS) energy 〈 ′uα
2 〉  where the filtered velocity is 

defined as 

 ui(xx) = d ′x
−∞

∞

∫ ui(xx + ′x eex )
6

πΔx

exp − 6x
2

Δx
2

⎛
⎝⎜

⎞
⎠⎟

  (5) 

and its filter width is Δx = 6rx  (Hamba 2018). Therefore, the 
positive value of the transfer Πzz  represents the energy transfer 
from the subgrid scale (SGS) energy to the GS energy. In the 
following sections we will examine the flow structure at the 
position y = −0.975  (y+ = 14.7)   and at the scale 
rx = 0.13 (Δx = 0.32)  where the contour of Πzz  shows its peak 
in Fig. 1. 

 
 

PPRROODDUUCCTTIIOONN  AANNDD  CCOONNDDIITTIIOONNAALL  AAVVEERRAAGGEE  
The energy transfer Πzz  in the scale space is related to the 

production term Pzz  of the SGS energy as follows: 

 Πzz = −〈Pzz 〉,  Pzz = −2τzk
∂uz
∂xk

  (6) 

where τij = uiu j − uiuj . Since the energy transfer Πzz  is an 
ensemble-averaged quantity, it cannot be directly used to 
explore the flow structure. Instead of Πzz , we examine the 
production term Pzz  to investigate the flow structure. 

The production term Pzz  consists of three parts as follows: 
 Pzz = Pzz1 + Pzz2 + Pzz3   (7) 

 Pzz1 = −2τzx
∂uz
∂x
, Pzz2 = −2τzy

∂uz
∂y
, Pzz3 = −2τzz

∂uz
∂z

  (8) 

The average of each part at y+ = 14.7  is 〈Pzz1〉 = −2.48,  
〈Pzz2 〉 = −1.11, 〈Pzz3〉 = −4.22  and the value of 〈Pzz3〉  is the 
largest. Moreover, the histogram of each part shows that the 
contribution from Pzz3  is the largest among the three parts. 
From the definition of Pzz3  given by (8), we can see that the 
negative production Pzz3  is caused by the positive velocity 
gradient ∂uz ∂z  because τzz ≥ 0 . 

We can examine profiles of ui  at some locations where Pzz  
is negative in several snapshots. However, it is not clear 
whether such flow structures are universal or not. In this work, 
we try to extract the flow structure associated with negative 
production using the method of conditional average (Adrian 
2007). As the conditions, we consider the value of the 
production term Pzz . We set the following condition 

 −100.05 < Pzz (x0,y0 = −0.975,z0 ) < −99.95   (9) 
to define the conditional average 〈 〉c1 . We first obtain the 
combinations of (x0,z0 )  satisfying Eq. (9) from the DNS data 
of 150 time steps. We then average the local flow fields 

ui(x0 + Δx,y,z0 + Δz)  around (x0,z0 )  to obtain the conditional 
average 〈ui 〉c1(Δx,y,Δz) . 

Figures 2 and 3 show the contour plots of the conditional 
averages 〈uy 〉c1  and 〈uz 〉c1  in the Δz − y  plane at Δx = 0 , 
respectively. The gray lines denote the location of y+ = 14.7  
( y = −0.975 ). In Fig. 2 the downward flow is clearly seen at 
Δz = 0 . In Fig. 3 the positive velocity gradient ∂uz ∂z  is seen 
at Δz = 0  and y+ = 14.7  representing the diverging flow in the 
spanwise direction. Therefore, the downward flow creates the 
spanwise diverging flow because of the impingement to the 
wall, resulting the increase of the energy 〈 ′uz

2 〉 . Figure 4 shows 
the contour plots of the conditional average of the production 
〈Pzz 〉c1  in the Δz − y  plane at Δx = 0 . The production is 
clearly negative at Δz = 0  and y+ = 14.7 . The negative 
production corresponds to the increase of the GS energy 〈 ′uz

2 〉 . 
In order to understand three-dimensional structure, we plot 

the isosurfaces of the second invariant of the conditionally 
averaged velocity Qc1[= −(∂〈ui 〉c1 / ∂x j)(∂〈uj〉c1 / ∂xi ) / 2]  
( = 150 ) in yellow and that of the production term 〈Pzz 〉c1  
( = −50  ) in blue in Fig. 5. The positive second invariant shows 
two streamwise vortices and the negative production region is 
located just below the two vortices. Because of the 
impingement to the wall, the downward flow generates the 
spanwise velocity component and enhances the streamwise 
vortices. 

 
 

AANNOOTTHHEERR  DDEEFFIINNIITTIIOONN  OOFF  PPRROODDUUCCTTIIOONN  
The figures shown in the preceding section suggest that the 

impinging motion is related to the third process of the 
generation of the streamwise vortex mentioned in the 
introduction. However, there are some ambiguous points in this 
interpretation. First, the impinging motion seems to be 
associated with the energy transfer between the GS energies 
rather than that from the SGS to GS energies. Second, two 
streamwise vortices rotating in the opposite direction to each 
other shown in Fig. 5 are not often observed in snapshots of the 
DNS data. 

With regard to the first point, we can simply understand 
that the impinging motion representing the transfer from the 
downstream velocity uy  to the spanwise velocity uz  because 
of the wall. This transfer seems to represent the energy transfer 
between the GS components. The production term Pzz  given by 
(6) can be divided into the isotropic part PIzz  and the 
anisotropic part PAzz  as follows: 

 Pzz = PIzz + PAzz,  PIzz = − 2
3
τkk

∂uz
∂z
,  PAzz = −2τzk

* ∂uz
∂xk

 (10) 

where τij
* = τij − (1 / 3)τkkδ ij . In the transport equation for the GS 

energy uz
2 , the corresponding term −Pzz  appears as the 

dissipation due to the SGS effect. However, it is more 
appropriate to view the isotropic part −PIzz  as the energy 
redistribution among the three parts ux

2 , uy
2 , and uz

2  because 
PIxx + PIyy + PIzz = 0 . This suggests that it is better to examine 
the anisotropic part PAzz  rather than Pzz  as the net production 
term for the SGS energy τzz . 

Similar to Pzz , the anisotropic production term PAzz  
consists of three parts as follows: 

 PAzz = PAzz1 + PAzz2 + PAzz3   (11) 

PAzz1 = −2τzx
* ∂uz

∂x
, PAzz2 = −2τzy

* ∂uz
∂y
, PAzz3 = −2τzz

* ∂uz
∂z

 (12) 

The average of each part at y+ = 14.7  is 〈PAzz1〉 = −2.48 , 
〈PAzz2 〉 = −1.11 , 〈PAzz3〉 = 0.11  and the value of 〈PAzz1〉  is the 
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largest as the negative contribution. In contrast to the original 
production case, the derivative ∂uz / ∂x  is important. 

With regard to the second point, streamwise vortices with 
positive streamwise vorticity ωx > 0  and negative streamwise 
vorticity ωx < 0  occur equally in the statistical sense. In Fig. 5, 
the two vortices are superimposed in the profile of 〈ui 〉c1  
because the condition is symmetric with respect to the plane at 
Δz = 0 . In order to resolve the degeneracy we need another 
condition in addition to the production term. Here, adopting the 
anisotropic production and adding the second condition ,we set 
the following conditions 

 −100.1< PAzz (x0,y0 = −0.975,z0 ) < −99.9   (13) 

 ∂uz
∂x
(x0,y0 = −0.975,z0 ) > 0   (14) 

to define the conditional average 〈 〉c2 . The second condition is 
introduced because ∂uz / ∂x  is important for PAzz . 

Figures 6 and 7 show the contour plots of the conditional 
averages 〈uy 〉c2  and 〈uz 〉c2  in the Δz − y  plane at Δx = 0 , 
respectively. The profiles shown in Figs. 6 and 7 are not 
symmetric about the center line at Δz = 0 . In contrast to Figs. 
2 and 3, only one pair of the positive velocity region and the 
negative velocity region is seen in Fig. 6 and 7. These profiles 
suggest one streamwise vortex at this cross section at Δx = 0 . 
Figure 8 shows the contour plots of the conditional average of 
the production 〈PAzz 〉c2  in the Δz − y  plane at Δx = 0 . The 
profile is not symmetric about Δz = 0  either. Nevertheless, the 
magnitude of the production is largest at Δz = 0  and y+ = 14.7 . 

We plot the isosurfaces of the second invariant of the 
conditionally averaged velocity Qc2  ( = 100 ) in yellow and 
that of the production term 〈PAzz 〉c2  ( = −30  ) in blue in Fig. 9. 
We can see one large streamwise vortex and another small 
vortex located upstream. This figure reminds us of a series of 
slightly-tilted streamwise vortices with alternate signs of 
vorticity. Moreover, the region of the strong negative 
production plotted in blue is attached to the main vortex. This 
situation is in contrast to Fig. 5 where the negative production 
region is located apart from the vortices. In Fig. 9, we can 
interpret that the rotation is the main vortex is driven by the 
SGS effect under the influence of the small upstream vortex. 

 
 

CCOONNCCLLUUSSIIOONNSS  
Using the DNS data of channel flow we examined the 

energy transfer in the scale space. The inverse cascade of the 
spanwise energy was seen near the wall. In order to understand 
the flow structure associated with the inverse cascade, we 
evaluated the conditional average corresponding to the negative 
production term of the SGS energy. It was shown that the 
negative production region is located below the two streamwise 
vortices. Although the imping motion seems to account for the 
enhancement of streamwise vortices, there are some ambiguous 
points in the interpretation. Considering the anisotropic part of 
the SGS production and adding the second condition, we took 
another conditional average. As a result, we observed a large 
streamwise vortex and a small vortex located upstream. we can 
interpret that the rotation of the former main vortex is driven by 
the SGS effect under the influence of the latter upstream vortex. 
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Figure 1. Contour plots of energy flux in the sale space 

Πzz (y,rx )  in the rx − y  plane. 
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Figure 2. Contour plots of conditional average 〈uy 〉c1  in 

Δz − y  plane at Δx = 0 . 
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Figure 3. Contour plots of conditional average 〈uz 〉c1  in Δz − y  

plane at Δx = 0 . 
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Figure 4. Contour plots of conditional average 〈Pzz 〉c1  in 

Δz − y  plane at Δx = 0 . 
 

 
Figure 5. Isosurfaces of conditional averages Qc1  and 〈Pzz 〉c1 . 

The domain is −0.3≤ Δx ≤ 0.3 , −1≤ y ≤ −0.9 , and 
−0.1≤ Δz ≤ 0.1  
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Figure 6. Contour plots of conditional average 〈uy 〉c2  in 

Δz − y  plane at Δx = 0 . 
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Figure 7. Contour plots of conditional average 〈uz 〉c2  in 

Δz − y  plane at Δx = 0 . 
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Figure 8. Contour plots of conditional average 〈PAzz 〉c2  in 

Δz − y  plane at Δx = 0 . 
 

 
Figure 9. Isosurfaces of conditional averages Qc2  and 〈PAzz 〉c2 . 

The domain is −0.37 ≤ Δx ≤ 0.37 , −1≤ y ≤ −0.9 , and 
−0.1≤ Δz ≤ 0.1  

 
	


