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ABSTRACT
This work applies resolvent analysis to compress-

ible zero-pressure-gradient turbulent boundary layers, for
freestream Mach numbers up to 4. We investigate the ef-
fects of compressibility on predicted flow structures, and,
in particular, look at how such effects may be attributed
to changes in mean properties. By leveraging the simi-
larity between the compressible and incompressible resol-
vent operators, as well as the Strong Reynolds Analogy,
we show that the shape of the streamwise velocity and
temperature components of resolvent response modes in
the compressible regime can be approximated using ideas
from wavepacket pseudospectral theory. This gives a means
of predicting the shape of resolvent mode components for
compressible flows without requiring the singular value de-
compositions of discretised operators. These approxima-
tions give accurate prediction of mode shapes for a Mach
number of 2, but lose some quantitative accuracy at higher
Mach numbers.

INTRODUCTION
Understanding the nature of high-speed wall-bounded

turbulent flows is of interest for a variety of aerodynamic
applications. For sufficiently high flow velocity, compress-
ibility effects can play a significant role in the properties of
boundary layers, affecting both skin friction and heat trans-
fer. Such effects are important for the efficient and reliable
flight of hypersonic vehicles.

At low to moderate Mach numbers, much of the effect
of compressibility can be accounted for by changes in the
mean properties of the state variables (Morkovin, 1962; Van
Driest, 1951; Spina et al., 1994). In particular, Morkovin’s
hypothesis (Morkovin, 1962) that the dynamics of com-
pressible flows are similar to the incompressible case, and
the Strong Reynolds Analogy (also due to Morkovin) relat-
ing velocity and temperature fluctuations, and its extensions
(Gaviglio, 1987; Zhang et al., 2014), suggest that methods
that have been successful in explaining and predicting fea-
tures of incompressible flows might have similar success in

the compressible regime.
For incompressible flows, the singular value decom-

position of the resolvent operator corresponding to a spec-
ified spatiotemporal wavenumber has proven to be valu-
able for predicting and understanding wall-bounded turbu-
lence (McKeon & Sharma, 2010; McKeon, 2017). In the
compressible regime, the stability of laminar compressible
boundary layers has been the subject of a number of stud-
ies (Lees & Lin, 1946; Malik, 1990; Hanifi et al., 1996;
Özgen & Kırcalı, 2008). However, there has been less work
applying operator based decompositions to fully-developed
compressible turbulent boundary layers (though compress-
ible jet flows have received some attention, e.g., Jeun et al.
(2016); Towne et al. (2018); Rigas et al. (2017)).

The present study extends the analyses utilising resol-
vent analysis to study compressibility effects in high-speed
turbulent boundary layers. In particular, we focus on the
comparison of mode shapes and amplification factors com-
puted from resolvent analysis of the compressible and in-
compressible Navier-Stokes equations. The mean data for
these analyses are taken from direct numerical simulations
of the compressible system (Pirozzoli & Bernardini, 2011).
We also explore how analytic approximations of the leading
response mode shapes (as in (Dawson & McKeon, 2019a)
for the incompressible case) may be applied to predict the
shape of compressible resolvent response modes, providing
both computational benefits and a theoretical understanding
of observed structures.

GOVERNING EQUATIONS AND METHOD
Resolvent formulation

In this paper, we consider both the compressible and
incompressible Navier-Stokes equations. Applying Fourier
transformations in the streamwise and spanwise directions
and in time, these equations may be expressed symbolically
as

(−iωI +Li)qi = fff i, (−iωI +Lc)qc = fff c, (1)
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where the subscripts i and c refer to the incompress-
ible and compressible cases, respectively. The state vari-
ables for each case are given by qi = (u,v,w,P) and qc =
(u,v,w,ρ,T ), where (u,v,w) are the Fourier-transformed,
mean-subtracted velocity components in the streamwise,
wall-normal and spanwise directions, and P, ρ , and T are
the Fourier-transformed, mean-subtracted pressure, density,
and temperature. The operators Li and Lc represent the
Navier-Stokes equations for incompressible and compress-
ible flow linearised about the corresponding mean profiles
for each variable, which are assumed to be known. The
right-hand-side terms of equation 1, fff i and fff c, represent
the remaining nonlinear terms of the incompressible and
compressible Navier-Stokes equations. We will addition-
ally consider the incompressible operator linearized about
the compressible mean, which we denote by Li,c.

For the compressible Navier-Stokes equations, we as-
sume a perfect gas with constant specific heat coefficients
and constant Prandtl number, with viscosity varying with
temperature according to the standard Sutherland relation-
ship. The resolvent forcing and response modes for a given
set of spatiotemporal wavenumbers are given by taking the
singular value decomposition of the resolvent operators

Hi = (−iωI +Li)
−1, (2)

Hc = (−iωI +Lc)
−1, (3)

Hi,c = (−iωI +Li,c)
−1. (4)

The leading right and left singular vectors of the resol-
vent operator give the leading forcing and response modes,
which we denote by φ1 and ψ1 respectively. These are asso-
ciated with a corresponding gain (i.e., the amount by which
the resolvent operator amplifies the optimal forcing while
mapping to the optimal response) given by the leading sin-
gular value, σ1. For the most part, we assume a standard ki-
netic energy norm for the incompressible case, and a norm
that eliminates pressure-related work for the compressible
case (Chu, 1965; Mack, 1984). Further details about the re-
solvent formulation for compressible wall-bounded flows is
given in Dawson & McKeon (2019b).

We discretise in the wall-normal direction using a
Chebyshev collocation method, on a grid which is trans-
formed by a rational transformation to increase resolu-
tion near the wall, and decrease resolution in the far-field
(Schmid & Henningson, 2012).

Mean data for compressible boundary layer is obtained
from the publicly available data associated with the work
of Pirozzoli & Bernardini (2011), while additional incom-
pressible data is obtained from the numerical simulations of
Wu et al. (2017).

Mode shape prediction
In recent work (Dawson & McKeon, 2019a), we have

shown that, subject to certain conditions, resolvent re-
sponse mode shapes for incompressible wall-bounded flows
may be approximated analytically, by using ideas from
wavepacket pseudospectral theory (Trefethen, 2005). Note
that similar ideas have been used in other contexts in fluid
mechanics in Obrist & Schmid (2010), Edstrand et al.
(2018), and Mao & Sherwin (2011).

To make the application of wavepacket pseudospec-
tral theory tractable, rather than considering the Navier-
Stokes equations directly, we start with a decomposition

of the resolvent operator into Orr-Sommerfeld and Squire
components (Rosenberg & McKeon, 2019), and utilise the
fact that the amplification is dominated by the action of
the Orr-Sommerfeld component, through the lift-up mech-
anism. This allows us to instead consider a scalar operator,
which can be further simplified to give

La = ikxU ′(yc)(y− yc)− (Re)−1
∆. (5)

Here Re is the Reynolds number, ∆ is the Laplacian op-
erator, and the mean streamwise velocity profile U(y) has
been linearized about the critical layer location, yc (the
wall-normal height where the wavespeed c = ω/kx is equal
to the mean streamwise velocity). With the selection of
an appropriate norm, the resolvent response modes asso-
ciated with the operator in equation 5 closely match those
for the streamwise velocity (and wall-normal vorticity) for
the full incompressible Navier-Stokes system. Furthermore,
wavepacket pseudospectral theory suggests that in certain
regimes, components of leading resolvent response modes
for this scalar operator should resemble wavepackets of the
form

ψa(y) =C exp
[
a(y− yc)−b(y− yc)

2
]
, (6)

where b > 0, and the constant C is defined such that the
mode has unit norm. With this assumed mode shape, ap-
proximating resolvent response mode amounts to finding
the parameters a and b that maximizes the resolvent re-
sponse, or equivalently minimizes

J(a,b) = ‖(−iωI +La)ψa(y)‖2. (7)

After substituting in the template mode shape given in equa-
tion 5, the minimiser of the cost function in equation 7 may
be found from computing the roots of a polynomial equa-
tion. As well as giving a theoretical explanation for ob-
served mode shapes, this analysis precludes the need for
numerical singular value decomposition, potentially giving
a substantial reduction in computational cost. This work
will study how these methods, described in more detail in
Dawson & McKeon (2019a), may be applied to predict the
shape of components of resolvent response modes for com-
pressible flows.

RESULTS
Resolvent mode shape and amplification

Here we present sample results from resolvent anal-
ysis of a compressible boundary layer. We will focus on
spatial wavenumbers kx = π/9 and kz = 2π/3 (where x
indicates the streamwise direction, and z the spanwise di-
rection), which correspond to the typical size of very large
scale motions (VLSM).

Figure 1 shows the leading two singular values for
these wavenumbers, as a function of the wavespeed c, as
well as the eigenvalues of the compressible linear opera-
tor, Lc, with Mach number M = 2 and friction Reynolds
number Reτ = 900. Singular values of Hc are shown for
the compressible resolvent operator with both the standard
compressible norm, and for a seminorm that only weights
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Figure 1. Leading two resolvent singular values (top, solid
lines for σ1, dashed lines for σ2) and eigenvalues (bottom)
for compressible boundary layer flow with Mach number
M = 2, Reτ = 900, and spatial wavenumbers kx = π/9,
kz = 2π/3. Singular values are also shown for Hi,c, the
incompressible operator linearised about the compressible
mean. The vertical dotted line represents the wavespeed
(c = 0.875) chosen for subsequent analysis in this paper.

the velocity components (and thus can be considered to
be a kinetic energy norm). Also shown are the singular
values of Hi,c, the incompressible resolvent operator lin-
earised about the compressible mean velocity profile. We
observe that for all cases, there is high amplification for
wavespeeds c≈ 0.8−0.9 (normalized by the freestream ve-
locity), which is typical of VLSM. This region also shows
a relatively large spectral gap between σ1 and σ2 for all
cases, suggesting that the leading set of forcing and re-
sponse modes captures a substantial component of the am-
plification of the resolvent operators within this regime. At
much larger and smaller wavespeeds, we observe substan-
tial differences between the incompressible and compress-
ible operators, owing to the presence of acoustic eigen-
modes with close to neutral stability, which are only present
for compressible operators. Note that the location of these
acoustic modes varies with the choice of spatial wavenum-
ber. We lastly observe that the choice of norm makes little
difference in the qualitative behavior of the singular values
of the compressible resolvent operator.

Figure 2 shows the shape of the leading resolvent forc-
ing and response modes for each of the resolvent opera-
tors considered in figure 1, as well as the incompressible
operator using an incompressible mean, all computed at a
wavespeed c = 0.875. For the incompressible operators, the
temperature field is obtained by appending a scalar transport
equation to the incompressible Navier-Stokes equations, as
described in Dawson et al. (2018) and Saxton-Fox (2018).
Note that the incompressible operators do not have a fluc-
tuating density field, and that the cases with a kinetic en-
ergy norm do not have forcing components in the thermo-
dynamic variables. Aside from these caveats, we observe
very little variation in the resolvent forcing and response
amplitudes, both in terms of the shape and relative ampli-

tude of each variable. The largest difference is in the loca-
tion of the peak for the incompressible operator with incom-
pressible mean velocity field, which can be attributed to a
shift in the critical layer location for this wavespeed. Fig-
ure 3 shows two-dimensional contours of these modes at a
given spanwise location for Hc and Hi. This shows that
the phase behavior is also similar for both the compressible
and incompressible cases, with inclined structures observed
for the temperature, and streamwise and spanwise velocity
fields, and very little phase variation in the wall-normal ve-
locity with distance from the wall. This suggests that in this
regime, the leading amplification mechanisms for the com-
pressible resolvent operator strongly resemble those for the
incompressible case.

Mode shape prediction
It was observed in figure 2 that the largest components

of the leading resolvent response modes are the stream-
wise velocity and temperature fields. This observation, and
the similarity between the shapes of the streamwise veloc-
ity and temperature mode components observed in figure
3, suggests that these fields are both amplified by a sin-
gle mechanism. Furthermore, the similarity between the
leading response modes of Hc and Hi,c suggests that this
mechanism is closely related to that which dominates the
response for incompressible flows. This suggests that meth-
ods to predict these mode shapes that have been successful
in the incompressible regime might be readily extend for
compressible flows.

Figure 4 compares the streamwise velocity component
of several numerically computed resolvent response modes
of Hc and Hi,c, with those predicted by solving the appro-
priately defined optimisation problem given in equation 7
to find predicted wavepacket shape parameters. We observe
that this method accurately predicts both the mode ampli-
tude and phase variation near the critical layer, with the
accuracy improving for larger spatial wavenumbers. This
can be explained, at least in part, by the fact that the mode
shape approximation relies upon a linearisation of the mean
velocity profile about the critical layer, which will be more
accurate for modes that are concentrated around the critical
layer. Figure 5 shows that this approach can also be used
to predict the shape of temperature modes, which is per-
haps unsurprising due to their close resemblance to stream-
wise velocity modes (with some differences attributable to
the nonunitary Prandtl number), as is consistent with the
Strong Reynolds Analogy (Morkovin, 1962; Smits & Dus-
sauge, 2006).

Effect of Mach number
So far, we have only considered compressible flows

with a freestream Mach number of 2, where we have found
that the behavior of resolvent modes are similarly predicted
for the incompressible and compressible operator. Figure 6
shows that this approximation becomes less accurate as the
Mach number increases to 3 and 4. As a consequence, the
mode shape prediction (which is developed using incom-
pressible operators with compressible means) also becomes
less accurate with increasing Mach number. However, the
resolvent modes considered here still retain the same quali-
tative features as the Mach number is increased.
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Figure 2. Components of leading resolvent (a) forcing and (b) response modes for various incompressble and compress-
ible (M = 2) resolvent operators, with friction Reynolds number Reτ = 900, spatial wavenumbers kx = π/9, kz = 2π/3 and
wavespeed c = 0.875.

(a) (b)

Figure 3. Leading resolvent mode shapes through a cross-section at a given spanwise location, for (a) incompressible and (b)
compressible (M = 2) flow, with parameters the same as those plotted in figure 2. Red and blue contours represent positive and
negative values of mean-subtracted variables, while the dashed black line represents the location of the critical layer.

CONCLUSIONS
We have demonstrated that resolvent analysis of com-

pressible zero-pressure-gradient turbulent boundary layer
flows gives modes shapes similar to the incompressible case
when using spatiotemporal wavenumbers typical of very
large scale motions. In particular, the incompressible re-
solvent operator linearised about a compressible mean pro-
file produces very similar mode shapes and amplification
levels to the compressible operator, which can be viewed
as a successful demonstration of the Morkovin hypothesis
(Morkovin, 1962). This similarity with the incompressible
case allows for the application of techniques developed for
the incompressible equations, such as the prediction of the
shape of components of the modes. As well as showing that
mode shape predictions can be applied to approximate the
streamwise velocity component of compressible boundary
layers, we also have shown that a similar approach can ap-
proximate the shape of the temperature field, as is consistent
with the Strong Reynolds Analogy. These methods are par-
ticularly successful up to a Mach number of 2, with larger

deviations between the results found at higher Mach num-
bers. The scaling of these results with Mach number, and
comparison with observed variations in turbulent structures
with increasing Mach number (Smits et al., 1989; Duan
et al., 2011) is the subject of ongoing work.
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