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ABSTRACT
We present a fractal sub-grid scale model for large

eddy simulation (LES) of atmospheric convective boundary
layer flow. This model is based on the fractality assumption
of turbulent velocity field. It reconstructs sub-grid veloc-
ity field from the knowledge of its filtered values on LES
coarse grid, by means of fractal interpolation, proposed by
Scotti and Meneveau (1999). The characteristics of the re-
constructed signal depend on the stretching parameters d,
which is related to the fractal dimension of the signal. Previ-
ous studies assume a constant stretching parameter in space
and time. To improve the fractal interpolation approach,
we account for the stretching parameter variability. We cal-
culate the local stretching parameters from direct numeri-
cal simulation (DNS) data of convective boundary layer us-
ing an algorithm proposed by Mazel and Hayes (1992) and
compute its probability density function (PDF). We found
that the PDFs of d have a universal form when the velocity
field is filtered to wave-numbers within the inertial range.
It is assumed that the stretching parameter d is a random
variable with the inertial range PDF of d. We perform 1D
a priori test and compare energy spectra and statistics of
velocity increments with DNS data.

1 INTRODUCTION
Complex spatial and temporal structures are the ma-

jor features seen in atmospheric flows. These structures
are seen over a wide range of scales from large synop-
tic scales O(1000km) to the smallest dissipative scales
O(1cm− 1mm) with their ratio L/η ≈ O(109). All scales
play an important role in weather prediction especially the
small scales, which influence particle statistics such as pref-
erential concentration, average settling velocity and relative
velocities. Direct numerical simulation (DNS) is an ideal
approach to resolve all these scales but it imposes an unre-
alistic computational cost. Alternatively, large-eddy simu-
lation (LES) allows for significantly improved accuracy in
simulating atmospheric (turbulent) flows, by calculating the
large scale features of the flow while the interactions be-

tween large (resolved) scales and small (unresolved) scales
are accounted for by a subgrid-scale model.

Structural sub-grid models such as fractal interpola-
tion technique (FIT) was introduced to construct synthetic,
fractal subgrid-scale fields applied to large eddy simulation
(Scotti & Meneveau, 1999). This model was aimed at mim-
icking (some of) the subgrid scales. It also allows for the
approximate reconstruction of two-point particle statistics
at the subgrid scale, such as relative small scale velocity
and particle segregation patterns (Minier & Pozorski, 2017).
This sub-grid model has been shown to be computation-
ally efficient and easy to use (Akinlabi et al., 2019). The
model’s underlying assumption is the existence of fractal-
scale similarity of velocity fields. An attribute of the con-
structed sub-grid velocity depends on the stretching param-
eter d, which is related to the fractal dimension of the sig-
nal. In Scotti & Meneveau (1999), it was assumed that
d is constant in space and time. These parameters were
set to d = ±2−1/3 derived from −5/3 inertial range scal-
ing of turbulence. Basu et al. (2004) Basu et al. (2004)
proposed an extension of this work by developing a multi-
affine fractal interpolation scheme with stretching parame-
ters d = −0.887 and d = −0.676 and showed that it pre-
serves the higher-order structure functions and the non-
Gaussian probability density function of the velocity incre-
ments. They performed an extensive a priori analyses of
atmospheric boundary layer measurements and argued that
the multiaffine closure model should give satisfactory per-
formance in large eddy simulations.

Characteristic features of atmospheric turbulence such
as the convective boundary layer are the inhomogeneity due
to buoyancy and the presence of internal and external inter-
mittency. External intermittency refers to the co-existence
of both laminar and turbulent regions in the flow. Inter-
nal intermittency means that at small scales, large velocity
gradients are present and the PDF of velocity differences
at high Reynolds number is stretched-exponential (Ishihara
et al., 2009). These attributes are the main set back of FIT
since the local stretching parameters have been shown to
change randomly in space and time (Akinlabi et al., 2018;
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Marchioli, 2017). The aim of this work is to develop an
improvement to FIT, which can be used as a closure model
for Lagrangian tracking of particles in atmospheric turbu-
lence. First, we account for the variability of the stretching
parameter by computing its local value with an algorithm
proposed by Mazel & Hayes (1992). Then, the PDF of lo-
cal stretching parameter is used to construct subgrid veloc-
ity, starting with the filtered DNS of convective boundary
layer flow (Mellado et al., 2016). The PDF of d is used
to perform 1D reconstruction of subgrid eddies. We com-
pare the performance of the new approach with Scotti &
Meneveau (1999) approach and the multiaffine fractal in-
terpolation scheme (Basu et al., 2004), which use constant
stretching parameters. We calculate the energy spectra of
the reconstructed velocity field and the statistics of velocity
increments. The focus on the statistics of velocity incre-
ments is motivated by their ability to quantify internal in-
termittency of small scale turbulence (Ishihara et al., 2009;
Kamps et al., 2009; Lui et al., 2010). We found the new
approach with random d the most favourable in terms of
the investigated statistics. It reproduces the Kolmogorov’s
−5/3 scaling of turbulent kinetic energy spectra in the in-
ertial range with the smallest error and without spurious
modulations. Moreover, PDFs of increments of the recon-
structed velocity have non-Gaussian, stretched-exponential
tails and agrees well with DNS.

2 FRACTAL INTERPOLATION TECHNIQUES
2.1 Basics

The fractal interpolation technique is an iterative affine
mapping procedure to construct the synthetic (unknown)
small-scale eddies of the velocity field u(x, t) from the
knowledge of a filtered or coarse-grained field ũ(x, t) (Scotti
& Meneveau, 1999). For instance, if ¯̃u(x, t) have resolu-
tion ∆

′
while ũ(x, t) have ∆ such that ∆

′
> ∆, the mapping

operator W [.] applied to ¯̃u(x, t) gives ũ(x, t) = W [ ¯̃u(x, t)].
The mapping is performed many times to generate synthetic
small scale velocity fields i.e. a fractal synthetic field

u f (x, t) = limn→∞W (n)[ũ(x, t)]

≡ limn→∞W [W [W...W [ũ(x, t)]...]]

For example, if we consider three interpolating points
{(xi, ũi), i = 0,1,2}, the fractal interpolation reconstructs a
signal w j, j = 1,2 at two additional points placed between
points 0 and 1 and points 1 and 2, see figure 1. Here, w j has
the following transformation structure:

w j

(
x
u

)
=

[
a j 0
c j d j

](
x
u

)
+

(
e j
f j

)
, j = 1,2 (1)

with constraints

w j

(
x0
ũ0

)
=

(
x j−1
ũ j−1

)
and w j

(
x2
ũ2

)
=

(
x j
ũ j

)
, j = 1,2

(2)
The parameters a j,c j,e j and f j can be written in terms of
d j (called the stretching parameter) and the interpolation
points {(xi, ũi), i = 0,1,2}. Values of d j fix the vertical
stretching of the left and right segments at each iteration and

determine characteristics of the reconstructed signal. Their
values are independent of the interpolation points.

The iterative procedure in the limit n→ ∞ creates a
continuous function u f (x) provided that the stretching pa-
rameter d j obeys 0 ≤ |d j| < 1. Also, if |d1|+ |d2| > 1
and (xi, ũi), are not collinear, then the fractal dimension
D of the reconstructed signal is the unique real solution of
|d1|aD−1

1 + |d2|aD−1
2 = 1 (for proof, see Barnley (1986)).

Another important constraint is that a fractal signals only
dissipate energy in the limit of small viscosity if |d| > 0.5
(Scotti et al., 1995). Thus, once the stretching parameter is
chosen, the remaining parameters a j,c j,e j and f j are given
as

a j =
x j− x j−1

x2− x0
(3)

e j =
x2x j− x0x j

x2− x0
(4)

c j =
ũ j− ũ j−1

x2− x0
−d j

ũ2− ũ0

x2− x0
(5)

f j =
x2ũ j−1− x0ũ j

x2− x0
−d j

x2ũ0− x0ũ2

x2− x0
(6)

1 1.2 1.4 1.6 1.8 2

x

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

u

initial

1 reconstruction step

10 reconstruction step

Figure 1. Different stages during the construction of a
fractal function with stretching parameter d = ±2−1/3 af-
ter 0,1 and 10 reconstruction steps.

Given that

1 <
N

∑
j=1
|d j|< 2, (7)

where N + 1 = NA and NA is the number of anchor points
(here, N = 2), the stretching parameter d j relates to the frac-
tal dimension D of a velocity field as:

D = 1+ logN

N

∑
j=1
|d j| (8)
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Figure 2. Energy spectrum of the reconstructed signal af-
ter 10 iterations showing −5/3 slope.

(for proof, see Barnley (1993)). It is important to point out
that the relation between inertial-range self-similarity of tur-
bulent velocity field and the fractal dimension is not trivial.
This relation is given by Orey (Orey, 1970) for Gaussian
random fields with a power-law spectrum, E(k)∼ k−α with
1<α < 3. The fractal dimension is given as D=(5−α)/2.
For Kolmogorov spectrum, α = 5/3, which results in D =
1.67. Although turbulent velocity fluctuations are not Gaus-
sian, the high-Reynolds experimental results of Praskovsky
et al. (1993) and Scotti et al. (1995) have a fractal dimen-
sion D' 1.7±0.05, which agrees closely with Orey’s the-
orem.

If a fractal dimension of 5/3 relating to −5/3 Kol-
mogorov scaling in the inertial-range of velocity fields is as-
sumed, then d j = ±2−1/3 (if d j is assumed to be the same
for all grid spacings) (Scotti & Meneveau, 1999). Figure
1 shows the 1-D construction of w j. We start from a field
with three grid points and we successively apply the map w j

with stretching parameter d j =±2−1/3. Shown are the ini-
tial field, first and the tenth application of the map w j . The
energy spectrum after ten reconstruction steps is shown in
figure 2.

2.2 Stretching parameter estimation
To compute the local stretching parameter of any arbi-

trary dataset, Mazel & Hayes (1992) algorithm can be ap-
plied. The algorithm is based on the property that the fractal
field is self-similar. For example, if we consider a dataset
with 5 interpolation points {(xi,ui), i= 0,1,2,3,4}, let µ be
the vertical distance between the middle interpolation point
(x2,u2) and a straight line between the end points (x0,u0)
and (x4,u4), see figure 3. The value of µ is positive if the
interpolation points are above the straight line and negative
otherwise. Let τ1 be the vertical distance between (x1,u1)
and a straight line between (x0,u0) and (x2,u2) while τ2 be
the vertical distance between (x3,u3) and a straight line be-
tween (x2,u2) and (x4,u4). Both τ1 and τ2 are positive if
their respective interpolation points are above their respec-
tive straight lines and negative otherwise. Then the stretch-
ing parameters d1 and d2 are τ1/µ and τ2/µ , respectively.
An illustration of this calculation is presented in figure 3.

In Akinlabi et al. (2018, 2019), it was shown that for
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Figure 3. Illustration of the stretching parameter calcula-
tion.

any arbitrary signal, the original and FIT signal are identical
if the Mazel & Hayes (1992) algorithm is used to retrieve d.
Also, the stretching parameter varies significantly in space
and has values outside the interval (−1,1) because the sig-
nal used is highly intermittent. In the formulation of FIT (as
shown in section 2.1), d can only take values within the in-
terval (−1,1) and hence, we place a constraint |d| ≤ 1. This
implies that only some of the magnitude of sub-grid scales
will mimic the original signal.

3 TEST CASE - CONVECTIVE BOUNDARY
LAYER

3.1 Description
The Mazel & Hayes (1992) algorithm was applied on

DNS of a dry, shear-free convective boundary layer (CBL)
that grows into a linearly stratified atmosphere (cf. fig-
ure 4). Details of the simulation can be found in Mellado
et al. (2016). The flow is driven by a constant and homo-
geneous surface buoyancy flux B0, and the buoyancy strati-
fication of the free atmosphere is N2, where N is the buoy-
ancy frequency. This configuration is representative of mid-
day atmospheric conditions over land. At a time-step, when
the initial conditions have been sufficiently forgotten, sta-
tistical properties of the flow can be expressed in terms of
the Prandtl number ν/κ , the Reynolds number B0/(N2ν),
the normalized vertical distance to the surface z/h and the
ratio h/L0 where B0 = 0.005 and N2 = 3.0 in simulation
units. The ratio h/L0 increases as the CBL grows into the
linearly stratified atmosphere. The variable h(t) is defined
as h ' (2B0N−2t)1/2 and provides a measure of the CBL
depth. The parameter L0 = (B0/N3)1/2 = 0.031 is the ref-
erence Ozmidov scale. It provides a measure of the thick-
ness of transition layer at the top of the entrainment zone
between the turbulent boundary layer and the free atmo-
sphere. The CBL depth h is about 20L0 and its velocity
scale U0 = L0N = 0.0537. The only parameter whose at-
mospheric value cannot be matched with the simulation is
the Reynolds number; for the data considered in this analy-
sis, Re0 = 117. The number of grid points used in the sim-
ulation is 5120×5120×1024, in the streamwise, spanwise
and vertical directions, respectively.

3.2 Probability distribution function of the
stretching parameter

For the DNS data described in Section 3.1, we use hor-
izontal profiles of the u, v and w components of velocity at
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Figure 4. Vertical cross section of the logarithm of the enstrophy in the convective boundary layer. The horizontal bars at the
side of the figures indicate a height equal to the CBL depth h and equal to half of it.

a height z = 0.43h. We choose this height because it is suf-
ficiently far from the surface and from the height z = 1.14h
(which corresponds to the height of minimum buoyancy
flux). First, we investigate the variability of d as 1-D in-
tersections of DNS velocity field are filtered successively to
wavenumber in the inertial range. Starting with the fully re-
solved DNS field with the grid spacing equal to η (where η

is the smallest dissipative eddy size), we reduce the resolu-
tion to 2η by using a low-pass filter and calculate the local
values of d for the filtered velocity field. Then, the velocity
signal is filtered to a grid resolution of 4η etc., the cut-off
wavenumber is decreased until the resolution matches the
inertial-range (at about 16η to 128η). The low-pass filter
used is the finite impulse response (FIR) filter of order 30
designed using the Hamming window method (Weinstein
et al., 1979). This is done with decimate function in MAT-
LAB software. We use the decimation low-pass filter be-
cause it is constructed to downsample the signal (i.e reduce
the number of grid points) and guard against aliasing. The
downsampling feature of the filter was important to have a
reconstructed signal with the same number of grid points as
the original (DNS) signal. We calculate the local estimate
of d with the Mazel & Hayes (1992) algorithm explained in
section 2.2. After each filtering, the local values of d were
extracted, values outside the interval (−1,1) were neglected
and absolute value of d was used to calculate its PDF. Since
the flow is statistically homogeneous over horizontal planes,
similar results were obtained for 1D intersections of veloc-
ity field calculated either in x- or y- directions. The PDF of
|d| and average fractal dimension of DNS velocity signals at
different grid resolutions are presented in Figure 5. In figure
5a, the PDFs change significantly for the first four succes-
sive filtering steps but seem to be self-similar when filtered
successively to inertial-range wavenumbers (at steps 4 to 7).
PDF of d was also reported by Akinlabi et al. (2019) to be
self-similar and independent of Reynolds’ number for DNS,
LES of the stratocumulus boundary layer and airborne data
of Physics of Stratocumulus top (POST). This implies that
the PDF of d can be used for FIT rather than the constant
values of d. All three velocity components give similar pro-
files of the PDF of the stretching parameter. The average
fractal dimension, calculated according to Eq. (8), decreases
to 5/3 inertial range scaling, as seen in figure 5b. Filter-
ing the DNS velocity signal to grid resolution 16η or 32η

corresponds to the inertial-range and we observe that their
fractal dimensions D ' 1.7± 0.1 agrees with Orey’s the-
orem, slightly larger than Scotti et al. (1995) estimate. We
also observe that probabilities of having positive or negative
stretching parameter are equal.
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Figure 5. (a) PDFs of the absolute value of stretching
parameter for horizontal profile of DNS velocity at dif-
ferent resolutions. (b) The average fractal dimension for
horizontal profile of DNS velocity at different resolutions.
The black line shows the value corresponding to the −5/3
inertial-range scaling.

4 RESULTS

To show the performance of the new approach, we ap-
ply FIT to a filtered 1D horizontal intersections of DNS of
convective boundary layer flow (explained in section 3.1) at
height z = 0.43h. First, the DNS velocity signal was filtered
to a spatial resolution of 16η (which is within the inertial
range) using the decimation function described in Section
3.2. We then reconstruct sub-filter scales back to the res-
olution η using FIT. For this, we select the stretching pa-
rameter from its PDF calculated from the filtered DNS data
(filtered to inertial range scale where there is self-similarity
of the PDF), see Fig. 5a, using the inverse transform sam-
pling method (Devroye, 1986). The procedure is as follows

1. Calculate cumulative distribution function F(|d|) from
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the PDF f (|d]), as

F(|d|) =
∫ |d|

0
f (s)ds.

2. Calculate the inverse function F−1(y).
3. If y is a random number from uniform distribution [0,1]

then d = F−1(y) is a random number from the investi-
gated PDF.

Apart from the mathematical constraint |d| ≤ 1, which
assures the continuity of the reconstructed signal at n→ ∞

reconstruction steps (Barnley, 1986), the second constraint,
discussed in Section 2.1 was related to the dissipative prop-
erties of the signal (Scotti et al., 1995) and reads |d|> 0.5.
Hence, in practice, in the reconstruction process, we only
retained the values |d| that were larger than 0.5. If |d| ≤ 0.5
is selected, the procedure was repeated and another random
value was chosen, till the condition 0.5 < |d| ≤ 1 was sat-
isfied. Next, the sign of d was selected randomly, such that
the positive and negative d have equal probabilities. Under
such assumptions the ensemble average 〈|d|〉 is compara-
ble to values reported in Ref. (Salvetti et al., 2006) and the
scaling of the reconstructed energy spectra is close to the
theoretical k−5/3.

The inertial-range scale invariance is the property that
directly relates to the idea of fractality of velocity field. As
observed in Fig. 5a, profiles of PDF f (|d|) display self-
similarity only for cut-off wavenumbers from the inertial
range. For this reason, the fractal reconstruction of the
dissipative part of the spectrum is not justified, as no self-
similarity is observed there. Instead, in the FIT reconstruc-
tion process, the inertial range was extended down to η and
properties of such an artificial velocity field were investi-
gated.
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Figure 6. Longitudinal energy spectra of u velocity com-
ponent for DNS and FIT with constant stretching param-
eter d = ±2−1/3, with constant stretching parameters d =

−0.887 and d =−0.676 and with random stretching param-
eters from calculated PDF

Figure 6 shows the longitudinal energy spectra E11(k)
(for u velocity component along x direction) of DNS, fil-
tered and FIT-reconstructed velocity field for the three in-
vestigated versions of the model: with d = ±21/3 as orig-
inally proposed by Scotti & Meneveau (1999), with d1 =

−0.887, d2 = −0.676 as proposed by Basu et al. (2004),
and with the new proposal with random d. As it is ob-
served, the energy spectra of constant values of d exhibit
periodic modulations (see also figures 7 and 8 of Scotti
& Meneveau (1999)). Basu et al. (2004) avoid this mod-
ulation by applying the discrete Haar wavelet transform.
FIT energy spectrum with constant values of d = ±21/3 is
much lower in some wave-numbers than the −5/3 inertial-
range scaling (especially at wavenumbers close to the cut-
off scale), although the upper envelope qualitatively follows
the −5/3 inertial-range scaling. The FIT energy spectrum
reconstructed with constant values of d = −0.887, −0.676
has similar properties as the Scotti & Meneveau approach,
except that the range between the upper and lower enve-
lope of the spectrum is somewhat smaller. The FIT energy
spectrum reconstructed with random values of d follows the
inertial-range scaling closer and shows no periodic modula-
tion.

Next, we investigated statistics of velocity increments
at two different points u(x + r, t)− u(x, t). The sample
space of velocity increment will be denoted by δu and the
distance between points by r = |r|. The tails of the PDFs of
velocity increments in the isotropic turbulence f (δu,r, t),
can be approximated by the stretched exponentials. The
non-Gaussianity of the PDFs for small r indicates the pres-
ence of the internal intermittency, that is, the probability of
extreme events (large velocity differences) at these scales is
much higher than predicted by a Gaussian distribution.

Figure 7 presents the PDFs of velocity increment (δu)
for DNS, filtered DNS and FIT velocity signals with con-
stant and random values of d for r = 8η and r = 2η .
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Figure 7. PDFs of velocity increments of DNS, filtered
DNS and FIT fields at r = 8η (up) and r = 2η (down).

The PDFs of velocity increments are far from Gaus-
sian and slightly skewed. The FIT model with random d
provides the best FIT with the DNS at smaller r. We note
here that at r = 8η , the difference between the three ap-
proaches is not obvious but at smaller values of r such as
r = 2η , the random d correctly reproduce DNS. Although
in the reconstruction process, the dissipative range (i.e. at
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r = 2η) is not reproduced in any FIT model. We report here
this result which seems interesting.

CONCLUSION
In this work, a fractal subgrid-scale model for large

eddy simulation of atmospheric flows was presented. With
fractal interpolation technique, we construct synthetic sub-
grid velocity field from the knowledge of its filtered values
on LES grid proposed by Scotti & Meneveau (1999). For
the construction process, values of the stretching parame-
ter d should be specified. The stretching parameter deter-
mines the characteristics of the reconstructed signal which
can be derived from the fractal dimension (Scotti & Mene-
veau, 1999). In previous literature, the stretching parame-
ter is chosen to be constant in time and space. To account
for its spatial variability, we estimate the spatial pdf of the
absolute stretching parameter |d| from DNS data of convec-
tive boundary layer. First, 1D intersections of DNS veloc-
ity field was filtered with a low-pass filter to certain cut-off
wavenumbers. Next, an algorithm proposed by Mazel &
Hayes (1992) is used to compute the local values of d. It
was found that if the cut-off wavenumbers were in the in-
ertial range, the PDFs of the stretching parameter display
self-similarity.

Next, 1D intersections of filtered DNS velocity field
were reconstructed such that d is a random variable with
the prescribed, previously determined PDF. Performance
of the new approach was compared with FITs with con-
stant values of d. It was shown the energy spectra fol-
low the −5/3 scaling more closely and have no spurious
modulations if d is random. Moreover, the non-Gaussian,
stretched-exponential tails of PDFs of velocity increments
are reproduced correctly by the improved model. We in-
vestigated these statistics as they quantify internal intermit-
tency of small scale turbulence (Ishihara et al., 2009; Lui
et al., 2010).

ACKNOWLEDGEMENT
This work received funding from the European Union

Horizon 2020 Research and Innovation Programme un-
der the Marie Sklodowska-Curie Actions, Grant Agreement
No. 675675.
MW and SPM acknowledge matching fund from the
Polish Ministry of Science and Higher Education No.
341832/PnH/2016.

REFERENCES
Akinlabi, E. O., Wacławczyk, M. & Malinowski, S. P.

2018 Fractal reconstruction of sub-grid scales for large
eddy simulation of atmospheric turbulence. Journal of
Physics: Conference Series .

Akinlabi, E. O., Wacławczyk, Marta, Malinowski, Szy-
mon P. & Mellado, Juan Pedro 2019 Fractal reconstruc-
tion of sub-grid scales for large eddy simulation. Flow,
Turbulence and Combustion (Under revision).

Barnley, M.F 1986 Constructive approximation 2 (303-
329).

Barnley, M.F 1993 Fractal everywhere. Academy Press,
Boston, MA .

Basu, S., Foufoula-Georgiou, E. & Porte-Agel, F. 2004
Synthetic turbulence, fractal interpolation and large eddy
simulation. Physical Review E70 (026310).

Devroye, L. 1986 Non-uniform random variate generation.
Springer-Verlag New York Inc. .

Ishihara, T., T., Gotoh & Y., Kaneda 2009 Study of high-
reynolds number isotropic turbulence by direct numeri-
cal simulation. Annu. Rev. Fluid Mech. 41 (165-180).

Kamps, O., R., Friedrich & R., Grauer 2009 Exact rela-
tion between eulerian and lagrangian velocity increment
statistics. Phys. Fluids E79 (066301).

Lui, L., F., Hu, X., Cheng & L., Song 2010 Probability den-
sity functions of velocity increments in the atmospheric
boundary layer. Boundary-Layer Meteorol. 134 (243 -
255).

Marchioli, C. 2017 Large eddy simulation of turbulent dis-
persed flows: a review of modelling approaches. Acta
Mech. .

Mazel, D. S. & Hayes, M. H. 1992 Using iterated function
systems to model discrete sequences. IEEE Transactions
on signal processing 40 (7).

Mellado, J. P., van Heerwaarden C.C. & J.R., Garcia 2016
Near-surface effects of free atmosphere stratification in
free convection. Bound-layer Meter. (159), 69–95.

Minier, J-P & Pozorski, J. 2017 Particles in wall-bounded
turbulent flows: Deposition, re-suspension and agglom-
eration. Springer (571), 0254–1971.

Orey, S. 1970 Gaussian sample functions and the hausdorf
dimension of level crossings. Z. Wahrscheinlichkeitsthe-
orie Verw. Geb. (15), 249 – 256.

Praskovsky, A.A., J.F., Foss, S.J., Kleis & M.Y., Karyakin
1993 Fractal properties of isovelovity surfaces in high
reynolds number laboratory shear flows. Phys. Fluids
A5 (2038-2042).

Salvetti, M. V., Marchioli, C. & Soldati, A. 2006 La-
grangian tracking of particles in large eddy simulation
with fractal interpolation. Conference on Turbulence and
Interactions TI2006 .

Scotti, A., C., Meneveau & S.G., Saddoughi 1995 Fractal
dimension of velocity signals in high reynolds number
hydrodynamic turbulence. Phys. Rev. E51 (5594 - 5608).

Scotti, A. & Meneveau, C. 1999 A fractal model for
large eddy simulation of turbulent flow. Physica D
127 (198232).

Weinstein, C.J., IEEE Acoustics, Speech & Society, Sig-
nal Processing 1979 Digital signal processing committee
programs for digital signal processing. IEEE Press, New
York .

6


