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ABSTRACT
This study investigates the structural and spectral

changes of a low Reynolds number turbulent channel flow
due to varying-phase opposition control by means of direct
numerical simulation. The focus is on three example con-
trollers, each with a different phase shift in Fourier domain
between sensor measurement and actuator response. Two
of these controllers lead to drag reduction, while the third
increases drag substantially. Based on snapshots of the flow
structure and actuator response, as well as spatial spectra
at various wall-normal planes, we show that drag reduced
flows exhibit a strong imprint of the near-wall cycle in the
control signal and that near-wall vortices are attenuated un-
der these control schemes. In case of a drag increase, the
control signal is much more multiscale and the most ener-
getic scales are spanwise constant structures. In accordance
with an increase in drag, these flows also show substan-
tially more vortical activity, even far away from the wall.
The present results suggest a range of spatial scales which
may be used in the future to better understand the role of
the phase and devise novel controllers with relaxed spatial
resolution requirements.

INTRODUCTION
The potential benefits associated with targeted manip-

ulations of turbulent flows have spurred vast research in-
terest in the field of turbulent flow control over the past
decades and brought forth numerous approaches for vari-
ous control objectives and flow geometries (see for example
Gad-el-Hak (2000) for an overview). Here, we concentrate
on turbulent drag reduction in incompressible wall-bounded
flows by means of active flow control and consider a variant
of the well-known opposition control scheme (Choi et al.
(1994)).

The opposition control scheme uses the wall-normal
velocity (v) at a detection plane located at a distance yd
above the wall (denoted by yw) as measurement input and
generates blowing and suction with equal amplitude but op-
posite sign as actuator response at the wall, v(yw) =−v(yd).

Previous direct numerical simulation (DNS) studies of tur-
bulent channel flow at Reτ = uτ h/ν = 180 (where uτ is the
friction velocity, h denotes the channel half-height and ν

is the kinematic viscosity of the fluid) show that the attain-
able drag reduction (DR) strongly depends on the sensor
location, with a maximum DR of approximately 25% (Choi
et al. (1994)). Subsequent studies show that maximum drag
reduction can be increased by using upstream sensor infor-
mation (Lee (2015)) or adding an integral term to the con-
trol law (Kim & Choi (2017)) and that the effectiveness of
control decreases with increasing Reynolds number (Deng
et al. (2016)).

In this study, we consider opposition control from a
Fourier domain rather than a physical domain perspective
and we allow the controller gain, i.e. the proportional-
ity constant between sensor measurement and actuator re-
sponse (which was equal to −1 above), to be complex. We
will refer to this control scheme as varying-phase opposi-
tion control hereafter and we will give a formal definition
of the control law in the following section. Recent DNS
results show that the DR attainable under varying-phase op-
position control strongly depends on the phase of the com-
plex controller gain and ranges from maximum DR for a
slightly negative phase to substantial drag increase for pos-
itive phases (Toedtli et al. (2019)). However, it is yet to
be understood how the structure of the flow changes with
phase to bring about the observed variation in DR. The goal
of the present study is therefore to shed light on the struc-
tural and spectral properties of controlled flows for various
phases of the controller gain. We note that other questions
about varying-phase opposition control, such as Reynolds
number effects or net energy savings, also remain to be clar-
ified, but such aspects are beyond the scope of this investi-
gation.

APPROACH
In this study we investigate varying-phase opposition

control in a low Reynolds number (Reτ ≈ 180) turbulent
channel flow by means of DNS. The streamwise, wall-
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normal and spanwise coordinate are denoted by x, y and
z, respectively, with corresponding velocity components u,
v and w. We will switch back and forth between a Fourier
and physical domain representation of the streamwise and
spanwise coordinate and in order to differentiate Fourier co-
efficients from physical domain quantities, we label the for-
mer with a superscript hat. The streamwise and spanwise
wavenumbers are denoted by kx and kz, respectively, with
corresponding wavelengths λx and λz.

The remainder of this section reviews the varying-
phase opposition control law and summarizes the numerical
framework used in this study. In the interest of brevity we
only give an account of the most important aspects and in-
terested readers may refer to Toedtli et al. (2019) for further
details about the control scheme and the DNS.

Control Law
After a Fourier transform in the streamwise and span-

wise direction, the varying-phase opposition control law
can be written as

v̂(kx,kz,yw, t) =−Âd v̂(kx,kz,yd , t−∆t) (1)

where Âd ∈ C is the complex controller gain and ∆t ∈ R
is a potential time delay between sensor measurement and
actuator response. Note that the original opposition con-
trol scheme is recovered for Âd = 1 and ∆t = 0. The con-
troller gain can be an arbitrary function of kx and kz, but
in the absence of any structured dependence on kx and kz
it is difficult to interpret its phase ∠Âd physically. In this
study we wish to interpret the phase as a streamwise shift
of the physical structure associated with a particular Fourier
mode, which necessitates defining the controller gain as fol-
lows

Âd =


0, if kx = kz = 0
1, if kx = 0,kz 6= 0
eiφ , if kx 6= 0,kz = 0
min(|v̂(kx,kz,t−∆t,yd)|,|v̂(kx,−kz,t−∆t,yd)|)

|v̂(kx,kz,t−∆t,yd)| eiφ , otherwise
(2)

where φ ∈ R. As explained in Toedtli et al. (2019), the
above controller sets ∠Âd = 0 if kx = 0 (streamwise con-
stant modes) and |v̂(kx,kz,yw, t)|= |v̂(kx,−kz,yw, t)| if kx 6=
0 in order to enable a clean interpretation of the phase as
a streamwise shift ∆x = φ/kx. A negative phase can be
thought of as streamwise lead of the actuation, while a pos-
itive phase corresponds to a streamwise lag of the actuation
relative to the sensor measurement. From here on, the term
‘varying-phase opposition control’ will be used to denote
control law (1) with Âd according to Eq. (2). We would
like to point out that this controller is related to the work of
Lee (2015), but we apply a constant shift in Fourier domain
rather than in physical domain.

The assumption of constant ∠Âd = φ (for kx 6= 0)
across wavenumber space is made for simplicity. Note that
the physical interpretation of the phase is also preserved
if Eq. (2) is multiplied by a wavenumber-dependent fac-
tor B(kx,±kz)eiψ(kx,±kz) with {B,ψ} ∈ R, but controllers
with such generalized gains are beyond the scope of this
study. Further note that Eq. (2) selects the smaller of
|v̂(kx,kz,yd , t − ∆t)| and |v̂(kx,−kz,yd , t − ∆t)| to generate
the actuator response at v̂(kx,±kz,yw, t), so that the control
signal is always less energetic than the sensor measurement.

Direct Numerical Simulation
The varying-phase opposition control scheme intro-

duced in the previous section is studied by means of DNS.
The direct numerical simulations are performed with a code
framework developed by Flores & Jiménez (2006) and the
reader may refer to their manuscript for further details about
the numerical method. The parameters of the DNS are cho-
sen to match typical literature values: the size of the com-
putational domain in the streamwise and spanwise direction
is Lx = 4πh and Lz = 2πh, respectively, and the resolution
in these directions is ∆x+ ≈ 8.8 and ∆z+ ≈ 4.4, where the
superscript + denotes normalization with respect to viscous
units of the uncontrolled flow, e.g. ∆x+ = ∆x(uτ )0/ν . A
sinusoidal grid is used in the wall-normal direction, with a
resolution of ∆y+min ≈ 0.37 at the wall and ∆y+max ≈ 3.09 at
the channel center. All control experiments are started from
the same initial condition and statistics are collected over
at least 10 eddy turnover times (h/uτ ) once a statistically
steady state is reached. The adequacy of the DNS settings
was confirmed by comparing results from the present DNS
to literature data, see Toedtli et al. (2019) for more details.

The flow is driven by a constant mass flux, so that Reτ ,
and therefore also the resolution in inner units, change when
control is applied. The resolution increases if the drag is
decreased and vice-versa and runs with Reτ > 245 may be
considered slightly underresolved. Two runs with higher
resolution were performed to rule out the possibility of grid
effects in the results and it was indeed confirmed that the re-
sults were almost identical. It should also be noted that the
varying-phase opposition control scheme is implemented
as Dirichlet boundary condition. The sensor measurement
from the previous timestep is used to generate the actua-
tor response at the immediately following timestep, so that
a delay of ∆t is introduced in Eq. (1). Simulations with
smaller ∆t and therefore smaller delays were performed to
rule out any effect of the delay and it was confirmed that the
DR obtained for smaller ∆t was essentially the same.

Since the mass flux is held constant, the change in drag
due to control can be quantified in terms of relative change
in mean wall shear stress τw

DR = 1− (τw)c

(τw)0
= 1− (Re2

τ )c

(Re2
τ )0

(3)

where the subscript 0 and c label quantities of the uncon-
trolled and controlled flow, respectively. From here on, the
term ‘drag reduction’ will be used to denote expression (3).
Note that positive values indicate drag reduction, while neg-
ative values represent drag increase.

RESULTS
A total of 50 DNS runs covering a parameter range of

five sensor locations, y+d = [5,10,15,20,25], and ten phase
shifts, ∠Âd = [−3π/4,−π/2,−3π/8,−π/4,−π/8,0,π/8,
π/4,π/2,3π/4] were performed to investigate the role ∠Âd
in varying-phase opposition control. We first give a brief re-
cap of how DR depends on the phase and readers may refer
to Toedtli et al. (2019) for a more detailed discussion of this
topic. We then focus on three example controllers and ana-
lyze the structural and spectral features of these controlled
flows.
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Recap of Drag Reduction Behavior
The dependence of the DR on the sensor location yd

and the phase between sensor and actuator ∠Âd is shown in
Fig 1, which was obtained by interpolating the raw DR data
from the 50 DNS runs using bilinear splines. Bright shad-
ing (positive numbers) represent drag reduction, while dark
colors (negative numbers) indicate drag increase and the
solid black lines outline a few selected contour levels. The
dashed vertical line denotes varying-phase opposition con-
trol with ∠Âd = 0, which up to the magnitude of the control
input is equivalent to the original opposition control scheme
(recall that Âd selects the smaller of v̂(kx,±kz,yd , t−∆t) to
set |v̂(kx,kz,yw, t)|= |v̂(kx,−kz,yw, t)|).

It is apparent that the effect of the controller strongly
depends on the phase shift ∠Âd and generally speaking
a small negative shift (e.g. ∠Âd = −π/4) leads to im-
proved drag reduction, while a positive phase shift dete-
riorates the control performance and eventually leads to
drag increase. Furthermore, the map shows that for a fixed
positive phase shift 0 < ∠Âd the control performance de-
creases as yd increases, while for a fixed negative phase
shift −π/2 ≤ ∠Âd < 0 the control performance increases
until it reaches a maximum and then decreases as the sen-
sor moves away from the wall. Maximum DR of 21% is
achieved for sensors located at y+d ≈ 15 and a phase shift
∠Âd = −π/4. For reference, the controller with ∠Âd = 0
and sensors located at the same y+d ≈ 15 achieves about 17%
drag reduction, which shows that the introduction of a neg-
ative phase can improve the controller performance. Maxi-
mum drag increase occurs for large positive phase shifts and
sensors located far away from the wall. In some of these
cases drag increases by more than 400% or, equivalently,
Reτ increases by more than a factor of 2. It is also inter-
esting to note that for a fixed sensor location, the phase can
completely change the attainable DR: for example, a con-
troller with sensors located at y+d ≈ 15 can achieve a 21%
drag reduction if ∠Âd = −π/4, while a controller with the
same sensor location but a phase shift of ∠Âd =+π/2 leads
to a 180% drag increase.

We would also like to highlight some interesting con-
nections to results in the literature: the DR behavior of the
controller with zero phase shift (∠Âd = 0) as a function
of yd (dashed vertical line) agrees well with the results re-
ported by Choi et al. (1994). It should be noted, however,
that the maximum DR at y+d ≈ 15 of the present controller
(approx. 17%) is lower than the 25% DR for classical op-
position control reported in the literature. This difference
is due to the smaller magnitude of the control input, as dis-
cussed previously. The conclusions drawn from Fig. 1 also
agree well with the results of Lee (2015), who reports that
the maximum DR can be increased by using upstream sen-
sor information (negative phase), while DR decreases when
the sensors are placed downstream (positive phase).

For the following structural and spectral analysis, we
select three example controllers for further consideration.
The example controllers are marked with a colored × in
Fig. 1 and correspond to: ∠Âd =−π/4 (controller leading
to maximum DR), ∠Âd = 0 (controller closely related to the
original opposition control law) and ∠Âd =+π/2 (example
controller leading to substantial drag increase). In all three
cases the sensors are located at y+d ≈ 15.

Structural Analysis
Representative structural features of the three con-

trolled flows are shown in Fig. 2. The left column dis-
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Figure 1: Contour map showing the drag reduction
of varying-phase opposition control as a function of
the sensor location y+d and phase shift ∠Âd . Posi-
tive numbers (light colors) indicate drag reduction,
while negative numbers (dark colors) represent drag
increase. The dashed vertical line denotes ∠Âd = 0,
which is closely related to the original opposition con-
trol scheme, and the markers (×) indicate the exam-
ple controllers considered subsequently. Note that the
colorscale is nonlinear to highlight the region of drag
reduction. Figure adapted from Toedtli et al. (2019).

plays streamwise wall-normal cross sections of vortical
flow structures, which are identified by means of the λ2-
criterion (Jeong & Hussain (1995)). The threshold in all
figures is λ2 = 0.05λu, where λu = −max(|λ2|0) is the
negative of the maximum absolute value of λ2 of an un-
controlled flow at around the same instant in time. Figs.
(2a) and (2c) look remarkably similar: the strongest vorti-
cal activity is found close to the wall and has a similar in-
tensity in both figures. This suggests that the flow structure
at maximum DR is not significantly different from classi-
cal opposition control. The controller with positive phase
shift on the other hand draws a different picture: the vorti-
cal activity in Fig. (2e) is strongly enhanced and vortices
are not only found in proximity of the wall, but throughout
the channel. These observations confirm the intuition that
vortices are less numerous in drag reduced flows and more
abundant in drag enhanced configurations. It is interesting,
however, to observe that the wall-based actuation does not
only change the structure of the flow in proximity of the
wall, but throughout (at least for ∠Âd =+π/2.)

The right column of Fig. 2 shows instantaneous snap-
shots of the actuation at the wall. The velocities are made
dimensionless with the centerline velocity of the uncon-
trolled flow at Reτ = 180 and red indicates a positive v
(blowing), while blue represents negative v (suction). Again
we observe a close resemblance between the control input
of ∠Âd = −π/4 and ∠Âd = 0: the wall actuation is domi-
nated by a few spatial scales, which give rise to streamwise
elongated streaky regions of positive and negative v. Typi-
cally, a region of positive v is surrounded on both sides (in
the spanwise direction) by regions of negative v and vice-
versa. One may speculate that the structure in the control
signal is the imprint of the streamwise vortices detected at
the sensor location and the spectral analysis in the follow-
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(a) ∠Âd =−π/4 (b) ∠Âd =−π/4

(c) ∠Âd = 0 (d) ∠Âd = 0

(e) ∠Âd =+π/2 (f) ∠Âd =+π/2

Figure 2: Flow structures and actuator input for various phase shifts ∠Âd . Figs. (2a), (2c) and (2e) show
streamwise wall-normal cross sections of instantaneous λ2-isosurfaces. The threshold is λ2 = 0.05λu, where
λu = −max(|(λ2)0|). Figs. (2b), (2d) and (2f) display a snapshot of the actuation at the wall, v(x,yw,z, t). Note
the larger magnitude of the actuator input in (2f).

ing section will support this hypothesis. The instantaneous
picture also suggests that the magnitude of the actuator in-
put is similar in both cases (note that the colorscale in both
figures is the same). A more detailed analysis of the flow
statistics can make this statement more precise and reveals
that the wall-normal velocity fluctuations v′(yw) generated
by the controller ∠Âd = −π/4 are about 15% smaller than
v′(yw) of the controller ∠Âd = 0. In other words, the con-
troller with a slightly negative phase shift achieves more DR
with a smaller control input.

Fig. (2f) shows the actuator response for the controller
∠Âd = +π/2. Instead of the streaky structure observed in
the previous cases, we find a much more multiscale and
unorganized control input. The streamwise coherence of
the velocity signal is largely lost, but some organization is
vaguely perceptible, with structures inclined with respect to
the streamwise direction or even oriented along the span. It
is also interesting to note that the control input is about an
order of magnitude larger than in the previous cases, but the
larger input results in drag increase rather than drag reduc-
tion. This suggests that the sensor measurement and actu-
ator response lock-on and that their feedback with positive
phase shift drives the flow to a new state with enhanced tur-
bulence.

Spectral Analysis
The previous discussion about structural features has

shown a close similarity between the controllers with
∠Âd = −π/4 and ∠Âd = 0. Their spectral properties are
also very similar and we therefore leave out the discussion

of ∠Âd = 0 in this section.

Fig. 3 shows the power spectrum of the wall-normal
velocity at various wall-parallel planes as a function of the
streamwise (λx) and spanwise (λz) wavenumber. The left
column shows the spectra of ∠Âd =−π/4 (maximum DR),
while the right column displays the spectra of ∠Âd =+π/2
(substantial drag increase). The wall-normal locations are
identical for both controllers and correspond to: actuator
input at y+ = 0 (first row), sensor measurement at y+ =
14.5 (second row) and y+ = 31.0 (third row), which is ap-
proximately the wall-normal location at which v′ peaks for
∠Âd = +π/2. The spectra were obtained by averaging the
corresponding planes of the upper and lower channel half
and the friction velocity of the uncontrolled flow, (uτ )0, is
used to rescale velocities and lengths to inner units. Note
that the wavelengths λ+

x < 45 and λ+
z < 28 are omitted in

Fig. 3. This choice was motivated by the observation that
the actuator input at these small wavelengths is almost zero.

We first turn our attention to the case ∠Âd = −π/4
shown in the left column. The power spectrum of the actu-
ation, Fig. (3a), confirms the instantaneous observations of
the previous section from a statistical point of view: the ac-
tuation signal is dominated by large streamwise structures,
with the peak occurring at λ+

x ≈ 2260 and λ+
z ≈ 103. These

scales are reminiscent of the near-wall cycle and give fur-
ther evidence that the distinct spatial structure of the control
signal is an imprint of the quasi-streamwise vortices. The
spectrum at the sensor location, shown in Fig. (3c), is re-
lated to the spectrum at the wall through the control law (1).
Under classical opposition control the two spectra would be
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identical, but under varying-phase opposition control the ac-
tuator signal is less energetic than the sensor signal, as can
be seen by comparing the two colorscales. This is because
the controller selects the smaller of |v̂(kx,kz,yd , t−∆t)| and
|v̂(kx,−kz,yd , t −∆t)| to generate the actuator response at
v̂(kx,±kz,yw, t). As mentioned earlier, this is also the reason
why varying-phase opposition control with ∠Âd = 0 leads
to less DR than classical opposition control. The close re-
semblance of Figs. (3a), (3c) and (3e) further shows that
the flow structure is preserved as one moves away from the
wall.

The column on the right shows the corresponding spec-
tra for the case ∠Âd = +π/2. It is immediately apparent
that many more scales are active and that the average con-
trol input is much larger compared to the case with a neg-
ative shift. It is also interesting to note that the control in-
put is dominated by structures that are relatively short in
the streamwise direction, but wide in the span. In fact, the
signature of the near-wall cycle seems to be absent in the
spectrum of the control signal and instead the peak actua-
tion occurs at λ+

x ≈ 174 and kz = 0 (i.e. spanwise constant
modes λ+

z → ∞). The spectrum at the sensor plane, Fig.
(3d), draws a similar picture, but with a peak shifted towards
shorter spanwise wavelengths (λ+

x ≈ 150, λ+
z ≈ 565). The

difference in the peak location between the sensor and the
actuator spectrum is again due to the controller gain. Fi-
nally, an increased activity of larger spanwise scales com-
pared to the ∠Âd =−π/4 case is also observed at the peak
location of v′ (which for this flow occurs at y+ ≈ 31), as
can be seen from Fig. (3f). However, it seems that more
energy is transferred towards longer streamwise and shorter
spanwise wavelengths as one moves away from the wall.

CONCLUSIONS
In this study we analyzed the structural and spectral

changes due to varying-phase opposition control by means
of DNS. We concentrated on three example controllers, all
with sensors located at y+d ≈ 15: ∠Âd = −π/4 (maximum
DR), ∠Âd = 0 (closely related to original opposition control
scheme) and ∠Âd =+π/2 (substantial drag increase). The
structural and spectral changes observed under control with
∠Âd = {−π/4,0} are very similar: instantaneous snapsots
of the flow field and time-averaged power spectra show that
both controllers attenuate the near-wall vortices and that the
actuator signal bears the hallmarks of the near-wall cycle.
The controller with negative phase shift is able to gener-
ate a slightly larger DR than ∠Âd = 0, with smaller control
input. The structural and spectral analysis further shows
that controllers with a positive phase, which lead to drag
increase, fundamentally change the flow structure not only
in the near-wall region, but well beyond. The typical near-
wall cycle scales only play a minor role and structures with

large spanwise extent are much more energetic than typi-
cally observed in uncontrolled flows. Furthermore, an in-
creased vortical activity is observed throughout the flow.

The present results show that the flow structure
strongly changes with the phase of the actuator, which ulti-
mately results in the wide variety of observed DR behavior.
In the presence of numerous active spatial scales it is dif-
ficult to study how a phase shift affects a single scale and
how the nonlinearity percolates the effects through the en-
tire system. Future studies will therefore investigate the ef-
fect of a phase shift on a single scale and results form the
present study can help identifying interesting target scales:
the maximum DR case suggests to focus on length scales
associated with the near-wall cycle, as one may expect.
However, controlled flows with increased drag suggest that
shorter scales with larger spanwise extent may be interest-
ing candidates, too, since they are strongly amplified in the
presence of a positive phase.

A better understanding of the phase shift for a sin-
gle scale and how a single scale can affect the entire flow
through nonlinear interactions may help devise effective
control schemes with relaxed spatial resolution require-
ments and, as was shown for ∠Âd =−π/4, reduced control
inputs.
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Figure 3: Power spectrum Φvv/(u2
τ)0 of the wall-normal velocity as a function of the streamwise (λx) and spanwise

(λz) wavenumber at various wall-parallel planes. ∠Âd = −π/4 for Figs. (3a), (3c) and (3e), while ∠Âd = +π/2
in Figs. (3b), (3d) and (3f). Figs. (3a), (3b) show the actuator input, (3c) and (3d) display the sensor measurement
and Figs. (3e), (3f) show the spectrum around the peak in v′. In all cases, the sensor is located at y+d ≈ 15 and the
uncontrolled (uτ)0 is used for normalization. Note that the colorscale is different in each figure.
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