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ABSTRACT
Particle entrainment into turbulent boundary layer flow

is a phenomenon of great importance to many environmen-
tal and industrial processes, e.g. dust particle entrainment
into the atmosphere. In this study, we extend a dynamic re-
suspension model for applicability to rough surfaces with
multiscale roughness elements, and couple it with a DNS
database of turbulent channel flow to track particle trajecto-
ries. The study aims at isolating the physical mechanisms
for small inertial particle resuspension by near-wall turbu-
lence and particle interactions with small surface roughness
elements. Secondly, a simple stochastic model is devel-
oped as particle subgrid-scale (SGS) model combined with
spatially filtered turbulent flow fields. Good agreements
between coarse-grained simulations and DNS results have
been obtained.

INTRODUCTION
Particle-laden turbulent two-phase flows are ubiquitous

in nature and engineering. In many circumstances, particles
are directly picked up from the wall by turbulent flow. For
example, dust particles with diameter smaller than about 70
µm can be entrained by strong winds into short/long-time
suspensions (Kok et al., 2012). This so-called resuspen-
sion phenomenon can play an important role in sediment
transport, outdoor/indoor environment, food engineering,
nuclear engineering, filtration system, etc. For more de-
tailed background, see a recent review paper by Henry &
Minier (2014a).

A resuspension model is needed to describe how a par-
ticle interacts with a rough surface and predicts the criti-
cal condition when a particle can be picked up. There are
mainly four classes of resuspension models in the litera-
ture (Henry & Minier, 2014a), namely the empirical model,
static force-balance model, kinetic probability model and
the dynamic probability model. The empirical model pre-
dicts particle resuspension rate (ratio between particle sus-
pension flux and surface concentration) by fitting measure-
ment data, e.g. Kim et al. (2010). The static force-balance

model gives the critical condition at which the force balance
is broken (Ibrahim et al., 2003), however the rolling/sliding
motion of particles along a rough surface is not included.
The kinetic probability model, like the RRH model (Reeks
et al., 1988) or Rock’n’Roll model (Reeks & Hall, 2001),
can take into account the rolling motion and kinetic en-
ergy accumulation of particles on rough surfaces. This type
of model requires additional phenomenological differential
equations. The dynamic probability model is directly based
on the fundamental principles of Newtonian mechanics to
solve the rolling motion of particle on a rough surface. For
example, the stochastic dynamic model of Henry & Minier
(2014b) divides the particle resuspension process into three
steps, i.e. a particle is set into motion from a static force
balance, followed by particle rolling on a surface including
roughness, and then a particle hitting a large asperity so it is
lifted off the surface.

Studies of resuspension models mostly focus on the
critical condition when a particle can be entrained into the
flow. Some attempts have been reported to couple parti-
cle resuspension model with flow simulation to examine the
evolution of the particle suspension process and underlying
physical mechanisms. Soltani & Ahmadi (1995) performed
one-way coupled DNS study of particle entrainment and
suspension in a channel flow, but all particles are initially
located at y+ = 1 not at the surface, hence no resuspension
model was invoked. Wu et al. (2017) studied particle resus-
pension phenomenon under periodically forced impinging
jet flow through wall-resolved large eddy simulation (LES),
in which particles are initially put at the first grid center
away from the surface. In order to sustain a continuous sus-
pension of particles from a surface, Richter & Chamecki
(2018) introduced a stochastic Brownian motion model to
be equivalent with the turbulent diffusion of the particulate
phase.

A key factor in particle resuspension models is to in-
clude account of surface roughness (typically much smaller
than viscous scales, i.e. could be hydrodynamically
smooth). We have confirmed numerically in a number of
tests that inertial particle can hardly be directly picked up

1



11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11)
Southampton, UK, July 30 to August 2, 2019

by turbulent flow if placed initially on a mathematically
smooth surface. In the prior dynamic model of Henry &
Minier (2014b) such rough surface cases were modeled by
assuming the presence of distinct small and large semi-
spherical asperities. In the present work, we generalize the
model with a hierarchy of multi-scale asperities to represent
surface roughness more closely approximating naturally re-
alistic conditions. Then we couple the generalized particle
resuspension model with a time-resolved DNS database of
a turbulent channel flow assuming one-way coupling. We
aim to produce benchmark data for coarse-grained simula-
tions. Lastly, we propose a stochastic particle SGS model
and near-wall model, and perform coarse-grained simula-
tions.

MODEL DESCRIPTION
Equations of Particle Motion

In our study of particle entrainment into turbulent
boundary layer flow, we resort to a Lagrangian model of
particle motion. We first describe the governing equations
for a small inertial particle moving in an incompressible
Newtonian fluid and secondly focus on the resuspension
model that describes the initial pickup of particles initially
located at the surface. The fluid velocity is obtained ei-
ther from a DNS database or from coarse-grained simula-
tion with a simplified stochastic model.

The Lagrangian particle trajectory is obtained from

dxp

dt
= up,

dup

dt
= fd + fl , (1)

fd =
kp

τp
(u f −up), (2)

fl = J
9.69

π

ρ f

ρp

ν f

dp

(u f −up)× (∇×u f )√
|∇×u f |

, (3)

in which xp and up are particle position and velocity vec-
tors, u f is the local fluid velocity seen by the particle, ρ f
and ρd are fluid and particle densities, ν f is fluid kinematic
viscosity, dp is particle diameter, and fd and fl are fluid drag
and shear-induced lift forces exerted on the particle. The
fluid drag fd is modeled through the drag law for small par-
ticle moving in an incompressible Newtonian fluid. Here
small particle means its diameter is much smaller than the
smallest flow length scale. τp = ρpd2

p/18µ f is the par-
ticle response time scale, µ f is fluid dynamic viscosity,
and kp = 1+ 0.15Re0.687

p accounts for the finite-Reynolds
number correction on the fluid drag model of Stokes flow
(Schiller & Naumann, 1933). Rep = |u f −up|dp/ν f is the
particle Reynolds number. The aerodynamic lift is mod-
eled according to Saffman (1965, 1968). The prefactor J
accounts for the correction of Saffman’s lift to finite par-
ticle Reynolds number (McLaughlin, 1991). And the ap-
proximate fitting of Mei (1992) is adopted in this study.
The added-mass force, Basset history force and pressure-
gradient force are not included because their effects are neg-
ligible in the regimes intended in this study. It should be
noted that we neglect near-wall corrections to drag and/or
lift models that may be required in further refinements of
the approach.

Particle Resuspension Model
For the particle resuspension criterion from a rough

wall, we generalize a dynamic stochastic particle resuspen-

sion model of Henry & Minier (2014b). In their original
work, a rough surface is assumed to be covered by two-level
small-scale and large-scale asperities. The particle resus-
pension process is modeled by a three-stage scenario, i.e. a
particle is set in motion (stage I), followed by rolling mo-
tion along the rough surface due to fluid and adhesion forces
(stage II), and finally a detachment from the wall when a
particle with sufficiently high kinetic energy collides with a
large-scale asperity (stage III).

The DLVO theory (Deraguin & Landau, 1941; Verwey
& Overbeek, 1948) is used as the adhesion force model to
calculate the Van de Waals force between particle and wall
following Henry & Minier (2014b):

Fa =−
dUrough

dz
≈−

Urough(z0 + ε)−Urough(z0)

ε
, (4)

where z0 = 0.165 nm, ε = 10−11 m, and Urough is the inter-
action energy between a particle and a rough wall, i.e.

Urough =Usmooth +
Nasp

∑
i=1

Ui,p−a, (5)

in which Usmooth is the interaction energy between a particle
and a smooth wall, which is detailed in Henry et al. (2012).
Up−a is the interaction energy between a particle and an
asperity, modeled by

Up−a(h) =−
AHRpRa

6h(Rp +Ra)

[
1− 5.32h

λ
ln
(

1+
λ

5.32h

)]
.

(6)
AH is the Hamaker constant, λ is a characteristic wave-
length for retardation effects and set to 100 nm.

The adhesion moment acting on a particle is then

Ma = Faa0. (7)

The pivot distance a0 is defined as the relevant moment arm
from interactions with the furthest small-scale asperity con-
tacting with the particle in downstream, which is given by a
probability with uniform distribution. The number of asper-
ities contacting with a particle Nasp is stochastically gener-
ated by a Poisson distribution.

The equation of rolling motion of a particle along the
wall is calcuated following Henry & Minier (2014b)

Ipω̇p = Md +Ma, (8)

Md = 1.4 fdRp, (9)

fd = 6π f µ f Rp(u f −up), (10)

in which, Ip is the moment of inertia of particle around
the pivot point, ωp is the angular velocity of the parti-
cle, up = ωpRp is the translation velocity of the particle in
purely rolling motion, Md is the fluid-induced moment in
the streamwise direction, and f = 1.7 is a factor accounting
for wall correction effect Henry & Minier (2014b).

Since the introduction of distinct small-scale and large-
scale asperities is arbitrary in Henry & Minier (2014b), we
generalize their model by introducing a multiscale, fractal-
like rough wall (Anderson & Meneveau, 2011) with a hi-
erarchy of asperity sizes. The distribution follows Dn+1 =
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Figure 1. Fraction of particles remaining on the wall after
1 s exposure to airflow with varying wind friction velocity
uτ . ua =

√
σAH/mp is a reference velocity scale, where

density ratio σ = ρp/ρ f is set to be 1600, the Hamaker
constant AH = 2.5× 10−19 J, and mp is the mass of the
particles. The particle radius is 5 µm, the minimum and
maximum asperity radii are 5 nm and 2 µm respectively,
and the number of asperity levels is set to 10.

2−nD1, where Dn is the nth-level asperity size. With a con-
stant coverage area for different asperity sizes, the number
density of asperity in each level obeys a D−2 power law,
as N(Dn)∼ D−2

n . In the present study, we define the large-
scale asperities responsible for resuspension as having Dn≥
dp/100. Then if a particle hits a large-scale asperity, the re-
suspension criterion is whether its kinetic energy is higher
than the adhesion well, i.e. Ek = mpU2

p/2 >Up−a(z0) (mp
is the mass of a particle), and the particle will be lifted off at
a vertical velocity equivalent to the streamwise one before
the collision (assuming elastic collision).

As a first application of the model, we consider fluid
velocities generated from the stochastic model of (Henry
& Minier, 2014b). Figure 1 shows a comparison of the
remaining particle fraction on the wall after 1 second ex-
posure to airflow between predictions of the stochastic re-
suspension model with experimental data of Reeks & Hall
(2001). It is seen that the prediction by the present gener-
alized model is in better agreement with the experimental
data than the original model of Henry & Minier (2014b),
especially at small wind friction velocities. It should be
noted again that although the wall is covered by asperi-
ties, their sizes are much smaller than the viscous scale, i.e.
D+

max� 1, thus the smooth-wall hydrodynamic assumption
is still valid.

Subgrid-Scale and Near-Wall Models
We propose a simple stochastic particle subgrid-scale

(SGS) model in coarse-grained simulation aiming to re-
cover the flow velocity seen by a particle which is needed
in the equations of particle motion.

The proposed stochastic model is a modified Ornstein-
Uhlenbeck-type process, which is

du′f ,i =−
u′f ,i
T ∗L,i

dt +

√
2

T ∗L,i
dMi, (11)

where, u′f ,i is the SGS flow velocity component along a

particle’s trajectory in the ith direction. In the diffusion
term, dMi = Li, jdW j and dW j is a vector Wiener pro-
cess (〈dWi〉=0 and 〈dWidW j〉 = δi jdt), in which Li, j is de-
termined by the Cholesky decomposition Li jL ji = Ci j =
〈u f ,iu f , j〉 − 〈ũ f ,iũ f , j〉, in which ũ f ,i = u f ,i − u′f ,i is the
resolved flow velocity component. The Lagrangian time
scales in the longitudinal direction (i = 1) and transverse
directions (i = 2 and 3) are given by

T ∗L,1 =
TSGS√

1+β 2 |ũr |2
2kSGS/3

, (12)

T ∗L,2 = T ∗L,3 =
TSGS√

1+4β 2 |ũr |2
2kSGS/3

, (13)

TSGS =
kSGS

Π

(
1
2
+

3
4

C0

)−1
, (14)

in which Π is the kinetic energy transfer rate from resolved
to unresolved scale computed from Π = (Cs∆)|S̃|3 using a
Smagorinsky SGS model, Cs is assumed to be 0.19 in fil-

tered DNS cases, ∆ is the filter size and |S̃| =
√

2S̃i jS̃i j is

the modulus of resolved velocity gradient tensor S̃i j. |ũr|
is the modulus of the relative velocity between particle and
flow. kSGS is the SGS kinetic energy modeled as kSGS =
Cε (∆Π)2/3 with Cε = 1.65 (Innocenti et al., 2016; John-
son & Meneveau, 2018). Other model constants are given
as C0 = 2.1 and β = 0.8 (Pope, 1994; Minier & Peirano,
2001; Innocenti et al., 2016; Johnson & Meneveau, 2018).

The grid resolution is very coarse in the heavily mod-
eled simulation to be considered in the present work, so that
the near-wall region is not resolved. This leads to the re-
quirement for a near-wall model of flow velocity and ve-
locity gradient. In a preliminary attempt, we use piecewise
functions to explicitly enrich the resolved streamwise and
spanwise velocity components in the viscous and logarith-
mic layers below the first grid off the wall (which we as-
sume is at height y1), following the general idea of the in-
tegral wall model (Yang et al., 2015). In the viscous layer
(including some part of buffer layer), i.e. y+ ≤min(11,y+1 ),
we use the linear velocity profile, as

ũ f ,x =
τ̃w,x

µ f
y, ũ f ,z =

τ̃w,z

µ f
y, (15)

∂ ũ f ,x

∂y
=

τ̃w,x

µ f
,

∂ ũ f ,z

∂y
=

τ̃w,z

µ f
, (16)

here τ̃w,x and τ̃w,z are streamwise and spanwise resolved
wall-shear stress, respectively.

In the logarithmic layer (also including some part of
buffer layer), i.e. min(11,y+1 ) < y+ < y+1 , we adopt the
classical logarithmic velocity law, as

ũ f ,x = ũτ,x

(
1
κ

lny++B
)
, (17)

ũ f ,z = ũτ,z

(
1
κ

lny++B
)
, (18)

∂ ũ f ,x

∂y
=

ũτ,x

κy
,

∂ ũ f ,z

∂y
=

ũτ,z

κy
, (19)

in which, ũτ,x =
√

τ̃w,x/ρ f and ũτ,z =
√

τ̃w,z/ρ f are stream-
wise and spanwise resolved friction velocity components,
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respectively. And model constants are set to κ = 0.41 and
B = 5.2.

NUMERICAL DETAILS
For more detailed testing of the model, we use fluid ve-

locities from DNS. Specifically, we use the turbulent chan-
nel flow dataset at Reτ = 1000 available from JHTDB (Gra-
ham et al., 2016) as the background flow to compute the
particle motion in the one-way coupled way. The chan-
nel flow dataset is produced by a direct numerical simu-
lation (DNS) in a wall-normal velocity-vorticity form us-
ing a pseudo-spectral method in the horizontal plane and
a seventh-order B-splines collocation method in the wall-
normal direction (Lee et al., 2013). Dealiasing is performed
using the 3/2-rule. Temporal integration is performed using
a low-storage, third-order Runge-Kutta method. The simu-
lation domain size is 8π × 2× 3π with a spatial resolution
of 2048× 512× 1536 in the streamwise (x), wall-normal
(y) and spanwise (z) directions respectively. In total 4,000
snapshots in a flow through time are available.

To mimic a large-eddy simulation (LES), we also fil-
tered the DNS channel flow data using a trapezoidal rule
with a box filter size of 64 times the grid spacing, which
is twice coarser than the one used by Johnson & Meneveau
(2018), e.g. ∆x = 64δx, where ∆x and δx are filter width
and DNS grid spacing in the x direction, respectively. The
filtering is similar in y and z directions. Every 32 snap-
shot was filtered in time and thus temporal resolution is 32
times coarser. The size of the coarse-grained dataset was
64×16×48 with 125 time steps.

The equations of particle motion are numerically
solved by a second-order Adams-Bashforth scheme. We
also compared the result with that using fourth-order
Runge-Kutta scheme, with negligible differences. The tra-
jectories by both schemes almost coincide with each other at
∆s/dp up to O(105), where ∆s is the trajectory length. And
there are only marginal differences in the particle concentra-
tion distribution. In the DNS study, the local flow velocity
at the particle position is obtained by the built-in getVeloc-
ity function in JHTDB using a sixth-order Lagrange spatial
interpolation and a third-order Hermite polynomial tempo-
ral interpolation. The time step for particle motion integra-
tion is dt+p = dtp/(ν f /u2

τ )≈ 0.1. In the filtered-DNS study,
the flow velocity is interpolated linearly in both space and
time. In this study, initially 10,000 particles are put on the
wall at rest with a uniformly random planar distribution. If
a particle crosses the center plane of the channel, it is re-
seeded on the wall, thus only one half of the channel flow
data is used. The particle Stokes number, here defined as
St = τp/τν (τν = ν f /u2

τ ) in viscous units, is set to be 5, 30
and 100, corresponding to viscous-scaled particle diameters
of d+

p = 0.27, 0.66 and 1.21 respectively. For reference, if
we set a dimensional friction velocity of uτ = 1 m/s for all
three kinds of particles and use air viscosity ν = 1.5×10−5

m2/s, then the channel half-width is H ≈ 0.16 m, and the di-
mensional particle diameters are around 4.2 µm, 10.4 µm
and 19.0 µm.

RESULTS
DNS Results

Figure 2 displays the time evolution of the Shannon en-
tropy of the particle distribution using the model with and
without including the lift force term. The Shannon entropy
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Figure 2. Temporal variation of Shannon entropy charac-
terizing the spatial distribution of particles after one flow-
through-time of channel flow using DNS.
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Figure 3. Particle volume fraction distribution at tuτ/H ≈
1.29 from DNS by including lift, as function of distance to
the wall from where the particles are being entrained, for
various particle Stokes numbers.

is defined by S = P/ lnNs, with P =−∑
Ns
j=1 p j ln p j, where

p j is the probability density of finding the particle in the
jth bin, Ns is the total number of bin used to discretize the
wall-normal direction. Here we subdivide the entire chan-
nel height into 100 bins, uniformly. The Shannon entropy
S is a useful parameter to quantify the vertical preferential
concentration of particle distribution (Picano et al., 2009),
with S = 1 for uniform distribution and S = 0 for the ex-
treme non-uniform case of all particles in one bin. After
one flow through time, a fraction of particles are picked up
from the wall and are entrained into the flow. In the lim-
ited time duration of the dataset, we can see that the particle
distribution is still developing and a statistically stationary
state has not been achieved. But the present result could be
useful as benchmark data for further model validation. It is
also clearly evident that the lift plays an important role in
particle resuspension. Figure 3 shows the probability den-
sity of particle distribution at tuτ/H ≈ 1.29 (after one flow
through time) in the wall-normal direction, by including the
lift force. In general, in the bulk of the channel, the number
of particles with higher inertia is larger because particles
with higher inertia are easier to be picked up by the flow, as
shown in figure 1.
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Coarse-Grained Simulation Results

As a first test, we perform simulation of the evolution
of inertia-less tracer particles (τp = 0) in the channel flow
using the filtered DNS (fDNS) data coupled with the parti-
cle SGS model, and totally 10,000 particles are uniformly
distributed across the channel at t = 0. The particle proba-
bility density function (PDF) distribution is expected to re-
main uniform with y at any instant. Figure 4 (a) displays the
PDF of the tracer particles y-position after one flow-through
time. It is seen that the PDF is close to the target value 1/Ns
through the channel height, with slightly higher values in
the channel center and very close to the walls, and slightly
lower than 1/Ns at y ≈ −0.9 and 0.9 (y+ ≈ 100). This is
because the strongest wall-normal velocity fluctuations oc-
cur at y+≈ 100, see figure 4 (c). The particle-sampled mean
streamwise flow velocity is in very good agreement with the
DNS result, as shown in figure 4 (b). The flow velocity fluc-
tuations are somewhat overestimated in all directions from
sampling result of the tracer particles, especially near their
peaks. However the streamwise and wall-normal fluctuat-
ing velocity covariance 〈uv〉 is reasonably predicted by the
fDNS coupled with the particle SGS model.

Figure 5 shows a comparison of particle volume frac-
tion distribution at tuτ/H ≈ 1.29 between DNS, fDNS, and
fDNS coupled with the particle SGS model or/and the near-
wall model. In general, we can observe that the fDNS cou-
pled with both the particle SGS model and the near-wall
model yields the best results, and the fDNS without any
model produces the worst predictions, in all cases with dif-
ferent particle Stokes number as well as including lift or
not. The results appear reasonable since the entrainment
and resuspension of the particles are highly dependent on
near-wall turbulence, and the near-wall model provides im-
proved resolved streamwise velocity and velocity gradient
representations. On the other hand, the predictive capa-
bility of the model also strongly depends on the particle
Stokes number. For example, if not including lift, no parti-
cle is predicted to be picked up by the coarse-grained simu-
lation at St = 5, as shown in figure 5 (a). However, particles
with St = 100 can be predicted to be successfully entrained
into the flow by the fDNS coupled with the particle SGS
model and/or the near-wall model, although it is still un-
derestimated, as seen in figure 5 (c). This is because the
particles with smaller inertia are more responsive to small-
scale velocity fluctuations which have been filtered out in
the coarse-grained simulation. In Figs. 5 (a-d), several of
the cases are not visible as particles remain at the wall and
their volume fraction is represented by a single symbol at
y = 0.

The agreement between the coarse-grained simulation
and the DNS results is seen to be much better if we include
the lift force, which can be ascribed to the more important
role of the lift played as well as the visible improvement
by the near-wall model. The preliminary results shown in
figure 5 imply that there still is room for significant im-
provements of the coarse-grained simulation models, espe-
cially at small particle Stokes number. One possible idea
is to separately take into account the positive and negative
wall-normal fluid motions (sweep and ejection events) in
the particle SGS model, since stronger ejection events can
help more particles to be lifted up. And the near-wall model
could also be improved by including the wall-normal veloc-
ity component explicitly.

SUMMARY
In this study, we numerically solved the equations of

particle motion with a resuspension model to simulate en-
trainment of small inertial particles by near-wall turbulent
flow. The resuspension model of Henry & Minier (2014b) is
generalized to a more realistic rough surface geometry with
more length-scales present, leading to results that agree bet-
ter with experimental data. Then, particle motion is coupled
with channel flow DNS assuming one-way coupling. The
preliminary results demonstrate the importance of including
aerodynamic lift and highlight the strong effects of particle
inertia. We also conducted coarse-grained particle simu-
lations (with filtered DNS fluid velocities) of this problem,
with a simple particle SGS model and near-wall model. Fur-
ther refinements and optimizations of these models could
yield predictions in better agreement with the DNS result.
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Figure 4. Test results for inertia-free tracer particles: (a) probability density function of vertical position (or particle mean
concentration), (b) particle-averaged streamwise velocity profile and (c) particle-averaged fluctuating velocity Reynolds stress
components.
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Figure 5. Comparison of particle volume fraction after one flow-through time by DNS, filtered DNS (fDNS), filtered DNS
coupled with particle SGS model (fDNS+SGS) and filtered DNS coupled with both particle SGS model and near-wall model
(fDNS+SGS+NWM). Subfigures (a-c) are the cases not including lift force, and (d-f) are the ones including lift force.
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