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ABSTRACT
The use of stochastic analysis enables a theoretically

well based, systematic derivation of a probability density
function (PDF)-realizable dynamic LES model. However,
this PDF-realizable model is not always stable due to the
rare appearances of non-realizable SGS stress values. The
stability of dynamic simulations is a difficult challenge spe-
cially in complex wall-bounded flow with high Reynolds
numbers. Based on the premise that the sub-grid scale
(SGS) model contributions is relatively small, many re-
searchers suggested implicit LES (iLES) as a realizable al-
ternative. On the other hand, it has been shown that ensur-
ing the fully realizability of the SGS stress tensor (stress-
realizability) solves the potential instability of the dynamic
LES. Nevertheless, this approach implies dynamic bound-
ing of the SGS stress in the dynamic LES calculations.
Thorough realizability and stability analyses of PDF- and
stress-realizable dynamic LES model (LDMK) are per-
formed for turbulent channel flow and separated hill flow
simulations covering a range of Reynolds numbers from
very low to high. In addition, stability of dynamic LES of
neutral Atmospheric Boundary Layer (ABL) on a flat ter-
rain is investigated with with a Reynolds number Re five
orders of magnitude higher than in other simulations. Re-
sults show that the stability of ABL computations is en-
sured by enforcing the newly developed dynamic realizabil-
ity bounds. The suggested method of stabilization is appli-
cable to other dynamic LES models. Unlike the fully realiz-
able model, iLES is not capable of producing any turbulent
viscosity as required for a high Reynolds number flow or
coarse grid applied. This limits the applicability of iLES to
simple flows with low Reynolds number (it is not applicable
to ABL flow simulations).

Introduction
Large Eddy Simulation (LES) (Meneveau & Katz

(2000); Germano (2000); Piomelli (1999)) has been em-
powered due to its ability to resolve the dominant turbu-
lence structures and its relatively lower computational cost

compared to Direct Numerical Simulation (DNS) (Spalart
et al. (1997); Pope (2000); Sagaut (2002)). In the context of
LES, dynamic LES is known to be the state-of-the-art solu-
tion to overcome the necessity of the empirical wall mod-
els to simulate wall-bounded flows (Lilly (1992); Meneveau
et al. (1996); Ghosal et al. (1995); Piomelli & Liu (1995)).
Nevertheless, dynamic calculation of the model parameter
can cause numerical instabilities (Germano et al. (1991))
which tend to become very challenging in simulations with
very high Reynolds numbers. The source of the numerical
instability is explained by researchers (Lund et al. (1993);
Mokhtarpoor & Heinz (2017)) but the challenge still stands,
specially in the wall-bounded flows with high Reynolds
number. According to Mokhtarpoor & Heinz (2017), nu-
merical instability is connected to the unrealizable values
of dynamic LES coefficient Cs, the coefficient used to calcu-
late dynamic turbulent viscosity, νt . Temporal investigation
of Cs shows that the standard deviation tends to increase be-
fore the numerical instability happens.
The focus of this research is how to either avoid or
overcome the numerical instability challenge for extreme
Reynolds number flows. In theory, in order to avoid the
numerical instability, one method is ignoring the instabil-
ity source (νt ), arguing that the contribution of νt is neg-
ligible in the effective viscosity and the numerical dissipa-
tion is enough to model it. This approach is called implicit
LES (iLES)(Drikakis et al. (2016); Aspden et al. (2008);
Deskos et al. (2018); Ritos et al. (2017)). iLES violates
the PDF-realizability of the velocity field by neglecting the
contribution of the SGS turbulent structures. Nevertheless,
it has no conflict with any realizability constraints in respect
to the stress tensor and can be considered stress-realizable.
As an alternative approach, honoring the realizability con-
straints for stress tensor, PDF-realizable dynamic model is
suggested in combination with dynamic bounds which en-
sure stress-realizability (LDMK).
In this work, the assumptions behind iLES are investigated
to study the range of validity of it. These studies are per-
formed by examining the dynamic LES of turbulent chan-
nel flow in a range of Reynolds numbers from Reτ=180 to
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2000 corresponding to Reb=2857 to 43478. Also, separated
hill flow is studied in a range of Reynolds numbers from
Reb=5500 to 37000. Both simulations are performed on dif-
ferent computational grids to observe the effect of the grid
coarsening. iLES and LDMK are investigated in terms of
cost and accuracy of simulation of the wall-bounded flow
regarding the implications of very high Reynold numbers.
In addition, the stability of dynamic LES applied to simulate
the neutral Atmospheric Boundary Layer (ABL) flow, is ex-
plored. The behavior of the LES coefficient Cs right before
the occurrence of the numerical instability and the effect of
stress-realizability on the numerical stability are presented
at Reb = 1.2× 109. Considering the very high Reynolds
number and the relatively coarse computational grid, iLES
is too inaccurate to be used for ABL simulations. Therefore,
honoring the realizability regarding the PDF-equation sys-
tem and stress tensor is left as the only solution to perform
and stabilize ABL simulations.

Realizable Dynamic LES Model
In this section, we address the realizability of a dy-

namic LES model with respect to two view points: first,
with respect to the realizability of the underlying PDF
model used to derive the dynamic LES model; and second,
with respect to the realizability of the SGS stress tensor.
Our LES model (LDMK) is based on a realizable stochas-
tic model for turbulent velocities (Heinz (2003a,b, 2007,
2008);Heinz & Gopalan (2012);Gopalan et al. (2013)). The
model implies the exact but unclosed filtered Navier-Stokes
equations. Thus, the incompressible continuity and momen-
tum equations are given by

∂Ũi

∂xi
= 0, (1)

D̃Ũi

D̃t
=− 1

ρ
∂ p̃
∂xi

+
∂ (2ν S̃i j)

∂x j
− ∂τi j

∂x j
. (2)

The tilde refers to space-averaged LES variables and
D̃/D̃t = ∂/∂ t + Ũ j∂/∂x j denotes the filtered Lagrangian
time derivative. In these equations, Ũi represents velocity
components in i direction, p̃ the pressure, ρ the constant
fluid density, ν the constant kinematic viscosity and finally,
S̃i j = (∂Ũi/∂x j + ∂Ũ j/∂xi)/2 represents the rate-of-strain
tensor. The subgrid-scale (SGS) stress tensor τi j appears as
an unknown on the right hand side of the momentum equa-
tion. The advantage of the underlying stochastic velocity
model is that it implies in addition to the continuity Eq. 1
and conservation of momentum Eq. 2 also an equation for
the SGS stress τi j (Heinz (2007)). The simplest τi j model is
given by a linear stress model which implies τi j =

2
3 c0kδi j

, where the turbulent viscosity is given by νt = kτL/3. The
turbulent kinetic energy k equation reads (Heinz (2003b))

D̃k

D̃t
=

∂
∂x j

[(ν +νt)
∂k
∂x j

]+νt |S̃|2 − 2(1−c0)k
τL

, (3)

where |S̃|=
√

(2S̃i j S̃ ji) refers to the magnitude of the rate-

of-strain tensor. The time scale τL is defined by τL = 2(1−

Figure 1: The two-dimensional periodic hill geometry.

c0)Δk−1/2. Hence, the turbulent kinetic energy equation
reads

D̃k

D̃t
=

∂
∂x j

[(ν +νt)
∂k
∂x j

]+νt |S̃|2 − k3/2

Δ
. (4)

The closure of Eq. 4 still requires the definition of the
SGS viscosity νt . The combination of νt = kτL/3 with
τL = 2(1−c0)Δk−1/2 implies the deterministic SGS model
νt = 2/3(1−c0)k1/2Δ =Csk1/2Δ, which will be referred to
as LDM with k-equation (LDMK). Here, Cs is obtained via
Cs = Ld

i jMji/MklMlk . Ld
i j refers to the deviatoric component

of the Leonard stress Li j = ŨiŨ j −ŨiŨ j (the overbar refers

to the test filter operation), and Mi j = 2ΔT
√

kT S̃i j , which
involves the test-filter turbulent kinetic energy kT = Lnn/2
and filter width on the test-filter level 2Δ = ΔT .
Next, we consider the realizability condition arising from
the structure of the SGS stress tensor. We have shown
that τi j is a positive semi-definite matrix provided |Cs| ≤
23
√

k/(24
√

3Δ|S̃|). It should be noted that we have not as-
sumed any specific structure of the turbulent viscosity νt in
this derivation. Therefore, the implied turbulent viscosity
bounds can easily applied in conjunction with other SGS
stress models.

Results and Discussions
The objective of the present work is to analyze the de-

mands from the stability of the realizable linear dynamic
LES model (LDMK) in simulation of high Reynolds num-
ber flow. First, comparison data for the large eddy simula-
tion are available via the channel flow DNS of Lee & Moser
(2015). The primary results of channel simulations are pub-
lished by the authors (Ahmadi et al. (2019a)) with focus on
the validation against DNS data and the effect of the grid
resolution. Second, to extend the study, we have consid-
ered the separated flow over a periodic hill flow studied by
Mellen et al. (2000). Figure 1 shows the geometry of the
2D periodic hill flow. These geometries have been used for
various studies and served as a benchmark for testing the
performance of various turbulence models.

The size of the computational domain for channel and
periodic hill simulations are Lx = 2πδ ,Ly = 2δ ,Lz = πδ
and Lx = 9h,Ly = 3.035h,Lz = 4.5h in the streamwise (x),
wall normal (y), and spanwise (z) directions, respectively,
where h is the height of the hill. The Reynold number of the
flow is 37,000 based on hill height and bulk velocity above
the hill crest. At the bottom and top, the channel is con-
strained by solid walls. No-slip and impermeability bound-
ary conditions are used at these walls. Periodic boundary
conditions are employed in the streamwise and spanwise di-
rections. In this study simulations of the periodic hill flow
are carried out on two computational grids defined in Table
1.
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Table 1: Grids for simulation of periodic hill flow.

Grid Nx ×Ny ×Nz Grid size

M1 80× 50× 30 120 K

M2 160× 100× 60 960 K

To study the realizability features of the dynamic co-
efficient Cs involved, time series of Cs inside the channel
flow at Reτ = 2000 on a resolving computational grid is
monitored. Figure 2 shows the time history of Cs and its re-
alizability bound, Cb, for two probe points along the height
of the channel. Regarding the x axis it is relevant to note
that time is presented by the dimensionless variable Flow-
Through Times (FTT), which encounters the times flow has
passed the length of the channel and calculated as:

FTT =
t ×Ub

Lx
. (5)

It is conventional to call a LES simulation numerically sta-
ble when it stably runs for 100 FTT. Figure 2 presents 30
FTT of behaviour of Cs and Cb as indication of the whole
time. While Cs and Cb are respectively shown in green and
blue, the red circles represent the times at which Cs values
hit the upper or lower realizability bounds. For the probe
point close to the wall (y+ = 5), in over 30 FTT (corre-
sponding to almost 188,000 iterations), there were about
12 zones (each one consists of several iterations hitting the
bounds) with Cs values hitting the lower realizability bound.
With respect to the other probe point at y+ = 100
(y=0.05m), the number of these events is even much higher.
It means that the LDMK model applied without using re-
alizability bounds is almost a realizable model (which is
implied by its PDF-realizability), but it is not fully realiz-
able. This can cause instability and must be treated care-
fully. Our recent investigations show bounding Cs from un-
realizable fluctuations is the key to stabilize the unstable
calculations. As previous researches show (Mokhtarpoor &
Heinz (2017); Ahmadi et al. (2019b)), preventing Cs oscil-
lations from unrealizable values can considerably stabilize
dynamic LES in a vast range of CFL numbers. By using the
SGS stress tensor realizability condition, we have made the
model fully realizable and consequently numerically stable.
As mentioned before, the alternative approach to treat nu-

merical instability is implicit LES which is stress-realizable
and consequently, more stable. In addition, iLES does not
require the implementation and calculation of Cs and Cb on-
fly which means easier simulation setup and lower compu-
tational cost. Nevertheless, the validity of iLES depends on
the validity of its basic assumption: the contribution of νt

is small enough to be modeled by numerical dissipation. To
investigate this assumption, it is very useful to observe the
contribution of the kinematic turbulent viscosity for differ-
ent flows. Hereby, dimensionless parameter ν∗ is defined
as:

ν∗ =
〈νt〉
ν

. (6)

to measure this contribution. Figure 3 presents ν∗ obtained

0 5 10 15 20 25 30
Time (FTT)

-0.1

-0.05

0

0.05

0.1

C
s

(a) y+ = 5

(b) y+ = 100

Figure 2: Time series of SGS coefficient Cs (green)
and its realizability bounds Cb (blue) in LDMK simu-
lations of the channel flow at Reτ = 2000 for 30 FTT
at two probes at different heights. The red circles in-
dicate the times at which Cs values hit the upper and
lower realizability bounds.

from turbulent channel flow LES, the most basic and fun-
damental case of wall bounded flow, at different Reynolds
numbers and computational grids. It is important to remem-
ber that ν∗ = 0 in iLES. Comparison of ν∗ on a computa-
tional grid fine enough to resolve flows up to Reτ = 2000
(Figure 3a), shows the contribution of the turbulent viscos-
ity grows as a function of Re1.4

τ . Therefore, increasing the
Reynolds number to values not accessible to DNS, e.g. as
observed in ABL simulations with Reb ≈ 109, can result in
considerable contribution of viscosity in form of νt .
At the same time, we observed how grid coarsening as well
can increase the contribution of νt in LES calculations (Fig-
ure 3b). As expected, computational grids with high reso-
lution and therefore, smaller LES filter width, resolve more
scales of the turbulent structures and need less contribution
from SGS models. Going back to the previous example of
LES of ABL, we are now capable to estimate that ν∗ would
considerably increase in case LES involves filter width size
100 times bigger than channel flow LES.

Last but not least, ν∗ can be considered to reflect the
nature of the flow. Figure 4, 2D field of ν∗ in the simulation
of the periodic hill flow, helps us to quantify the influence
from simulation of a more complex flow which includes
separation and re-attachment phenomena, on the contribu-
tion of the turbulent viscosity. The Reynolds number of this
flow (Reb = 37000) is almost comparable to the channel
flow Reynolds number at Reτ = 2000 (Reb = 43500). In
addition, the size of the LES filter (Δ = 0.028) is almost
comparable with the second coarse grid presented in Figure
3b. Nevertheless, the comparison between these two cases
shows that ν∗ considerably increases (grows 100 times) in
the region of the separation bubble.

Each one of these parameters can make the distribution
of the kinematic turbulent viscosity considerable enough to
violate the validity of the iLES assumption. Figure 5 illus-
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Figure 3: Turbulent viscosity contribution of wall
bounded channel flow in a: different Reynolds num-
bers using the finest grid, b: different grid size in flow
with Reτ = 2000 .

Figure 4: 2D representation of ν ∗ in periodic hill.

trates how the combination of critical parameters can lead
to wrong calculation of the flow field. Figure 5 presents
the streamlines formed based on the mean velocity fields
calculated by classical LES with LDMK and implicit LES
at two computational grids (M1 and M2). The comparison
between Figure 5a and Figure 5c reveals a noticeable devia-
tion in the predicted characteristics of the separation bubble
e.g size, shape and separation and reattachment points. Ex-
tending the study to the finer grids (Figure 5b and Figure
5d) results in more accurate simulations where the calcu-
lated separation bubble have converged to the more similar
characteristics.
The shortcoming of the equation system to produce enough

turbulent viscosity must be compensated by finer grids.
Such a trade off does not look feasible in terms of compu-
tational costs. The computational cost implied by refining
the mesh to enable the spatial grid to perform acceptable in
iLES, is much more than the cost implied by on-fly calcu-
lation of Cs and Cb. In addition, refining the grid demands
smaller time discretization to keep the CFL number low and

(a) LES- M1 (b) LES-M2

(c) iLES-M1 (d) iLES-M2

Figure 5: Stream Lines based on the mean velocity for
LES and iLES at Reb = 37000.

this is an extra computational cost.
At the end, the best approach to handle the numerical insta-
bility in dynamic LES without compromising the accuracy
and cost, is honoring the realizability constraints imposed
by the nature of the turbulent flow.

Stability of dynamic LES in ABL
Global energy demands for cheap and green energy re-

sources motivated big wind farm projects, each one includ-
ing several modern large wind turbines. To invest safe, a
deep knowledge of potential power output is essential. Site
assessment employs CFD simulations to investigate the lo-
cal wind power within the wind farm according to the local
wind speed and direction. In the context of dynamic LES,
such simulations are extremely challenging while they in-
volve simulation of kilometers of [perhaps] complex ter-
rain resulting very coarse computational grid and perhaps
separated flow. In addition, the depth of ABL (δ ) is esti-
mated to be at least around 1 km. Therefore, together with
the bulk wind speed (Ub), they can build up an extremely
high Reynolds number comparing to the highest Reynolds
numbers studied in channel (Reb = 43500) and hill flow
(Reb = 37000):

Reb =
Ubδ

ν
. (7)

Such combination of extreme conditions in ABL flow
results in very unstable LES which numerically collapses
very fast. The observations in this section are based on pre-
liminary results from LES with LDMK model to simulate
neutral ABL on a flat terrain taking into account Coriolis
force. Simulations are performed on a computational do-
main Lx×Ly×Lz = 3km×3km×2km, where z is wall nor-
mal direction. The grid resolution is 10 m in x and y direc-
tions, while first cell center in the z direction is located at
z=0.45 m. The final mesh consists of 13.5 M grids. It is
important to notice, it is by no means possible to calculate
ABL flow with a resolving computational grid which can
satisfy the criteria introduced in literature for attached wall-
bounded flow. The coarsest resolving grid for ABL flow can
cost one a LES simulation with a mesh as big as 1012 cells.
This is how the combination of very high Reynolds number
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(a) P1-fully realizable LDMK
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(d) P2-fully realizable LDMK
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(e) P2- Standard Deviation of Cs
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Figure 6: Time series of LES coefficient (Cs) in LES of ABL flow with Reb = 1.2×109. For detailed key description
read the caption of Figure 2. The vertical blue line refers to the beginning point of the numerical instability
process. Standard deviation and time-moving average values of C s are compared between fully realizable and
PDF-realizable models.

and very coarse computational grid can discredit the valid-
ity of iLES as an approach to stabilize dynamic LES.

The simulations with the fully realizable model are sta-
ble for over 100 FTT at time step Δt = 0.005 s, while it takes
171 s for the flow to pass through the domain once. In con-
trast, the simulation with the PDF-realizable model with-
out stress-realizability becomes unstable after 2.35 s (0.01
FTT) at a smaller time step, Δt = 0.001 s. We tried to in-
crease the sampling period by decreasing the time step, so
the numerical instability delays and we can investigate the
mechanism before the occurrence more clear. Samples are
collected at 100 points and two random points at two differ-
ent heights represent the others here: P1 at z= 9.8 m and P2
at z = 503 m. Figure 6 illustrates the mechanism behind the
numerical instability by presenting the dynamic behavior of
Cs in time. Let us first look at Figure 6a and observe the
dynamic behavior of Cs and its stress-realizable bounds in
30 s. After a short time (0.2935 s, marked by vertical blue
line), Cs hits the upper realizable dynamic bound Cb for the
first time. This means here for the first time, the calculation
of Cs tends to a value which violates the realizability of the
stress tensor. At the exact same moment, the standard de-
viation of fully realizable and only PDF-realizable models
deviate from each other drastically (see Figure 6b). The un-
realizable status seems to be damped in the fully realizable
model resulting in a stable LES. Where the sudden increase
of the standard deviation in the absence of stress-realizable
bounds, builds up to a numerical instability which stops the
simulation after 2.35 s. The sudden relative increase of the
standard deviation of Cs in the model with no bounds, also
influence Cs moving average as presented in Figure 6c. It
is important to notice that the behavior shown in this fig-
ure belongs to a random point and every point experiences
a different time history regarding Cs calculations. As an-
other sample point in the domain, history of Cs and Cb at P2
are presented in Figure 6d. At P2, the event leading to the
numerical instability starts at t = 1.18 s by hitting the lower
bound for the first time. The same pattern suddenly appears
in the behavior of the standard deviation of Cs. In a split
of second, unrealizable coefficient adopt values 20 times
larger than the realizable model. This behavior is found
to be repetitive among all the points. As a result of piling

up such unrealizable high standard deviation, the equation
system behind the simulations tend to numerical instability.
Although the PDF-realizable dynamic of the equations tries
to stabilize the simulation, this can not be done without the
company of the stress-realizable constraints.

Conclusions
The main goal of this paper is to investigate the de-

mands of numerical stability of dynamic LES of a wall-
bounded flow at a very high Reynolds number. To show
this, the preliminary results from the simulation of neutral
ABL flow on a flat terrain is presented at Reb = 1.2× 109

as a test case. The simulations were found to be extremely
unstable without a suitable stabilizing technique. It is esti-
mated to be even more challenging to extend the simulations
to the complex terrain simulations including separation and
re-attachment of the flow and taking into account thermal
gradients due to the sun radiation. A PDF-realizable LES
model was found to be not fully stress-realizable, which
can cause numerical instabilities. We have derived a con-
dition for the realizability of the SGS stress tensor, which
made the non-equilibrium (LDM) fully realizable. Stability
analyses performed for a high Reynolds number separated
flow demonstrated that the new fully realizable LES model
(LDMK) is always stable for a wide range of CFL numbers.
This approach is easily applicable to stabilize other dynamic
LES models. While alternative stabilization concepts (con-
stant clipping or averaging in space), in comparison, suffer
from limiting assumptions and professional manual model
setup. We also presented realizable dynamic LES applied to
other flows, like turbulent channel flows covering a range of
Reynolds numbers. Comparisons with implicit LES with-
out SGS model, which are often applied to test numerical
schemes, are interesting because such models are stress-
realizable but not PDF-realizable. Consequently, iLES does
not suffer from numerical instability but comes with short-
comings of its own. Its equation system by nature is un-
able to produce kinematic turbulent viscosity and this can
result in inaccurate results in some conditions. For increas-
ing Reynolds number, remarkable differences are found be-
tween iLES and fully realizable methods. Evaluating the
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results on the computational grids with different mesh res-
olutions magnifies the lack of validity of iLES. Not being
PDF-realizable makes iLES very sensitive to the size of fil-
ter width. In order to compensate a SGS model, iLES de-
mands very high grid resolution leading to very expensive,
almost non-affordable, computations. The overall conclu-
sion of these studies is that methods honoring all relevant re-
alizability principles offer significant advantages compared
to methods that do not honor realizability constraints.
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