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ABSTRACT
The study focuses on flow instabilities in supersonic

channel flows over assigned wall impedance. Such in-
vestigation is carried out via the Time-Domain Impedance
Boundary Condition (TDIBC) technique enabling the ex-
act imposition of the wall acoustic response in high-fidelity
simulations. This type of boundary condition is applied
to bottom wall of compressible turbulent channel flows
with two bulk Mach numbers: Mb = 1.50,3.50. Bulk
Reynolds number Reb are selected to ensure similar vis-
cous Reynolds number Re∗τ that leads to resemblance of
near wall turbulence structures at different Mach numbers.
A mass-spring-damper impedance model is adopted for
TDIBC, with the resonating frequency fres tuned to large
eddy turnover frequency. For each Mach number, simula-
tions are performed with various wall acoustic resistance:
R = 0.10,0.50,1.00,∞. The finite wall impedance results
in non-zero wall normal velocity fluctuations. For the same
Mach number, wall with lower acoustic resistance R exhibit
stronger reaction to the mean flow, reflected by a larger root-
mean-square wall normal velocity. For values of R below
(including) 0.50, a drastically change in the near wall tur-
bulence structures is observed: the typical near wall stream-
wise streaks are replaced with spanwise roller, exhibiting
the Kelvin-Helmholtz type of instability. With sufficiently
high permeability, rollers start to have a strong interaction
with the overlying mean flow.

INTRODUCTION
The application of porous walls as acoustic liner has

gained its popularity in the past few decades, mainly used as
an efficient way for noise reduction in aero engines. When
performing numerical simulations including the porous
wall, it is not easy to include the detailed geometry directly
in the computational domain. An alternative way is to de-
fine a proper wall boundary condition that can character-
ize the wall acoustic property. Such property is usually de-
fined through a complex quantity called acoustic impedance
Z(ω), written as (Kinsler et al., 1999)

Z(ω) = p̂/v̂n (1)

where p̂ and v̂n are the Fourier transform of surface pressure
and normal velocity signals, ω is the angular frequency. As
one can notice, equation (1) is defined in the Fourier do-
main. Its time correspondence will be needed if the sim-

ulation is performed in time domain, which is usually the
case in computational fluid dynamics (CFD) or computa-
tional aeroacoustics (CAA) . As a result, a time-domain
impedance boundary condition (TDIBC) is of great inter-
est. Efforts have been made to tackle this type of bound-
ary condition since last century. The very first contribution
can date back to the work by Ingard (1959), who derived
the proper boundary conditions for invicid flow. Later, My-
ers (1980) extended the result to viscous flow. The com-
bined result is usually referred to as Ingard-Myers condi-
tion in the community. A well-known issue of TDIBC is its
well-posedness, which is in general related to the form of
impedance being used. Tam & Auriault (1996) successfully
implemented a three-parameter impedance model with lin-
earized Euler’s equations. A set of time domain PDEs can
be derived directly from the impedance boundary condition
in Fourier domain. This type of TDIBC will be well-posed
provided the imaginary part of the impedance has the cor-
rect sign. Later, Fung & Ju (2001) constructed the TDIBC
based on residue theorem. In this method, the convolution
integral deducted from (1) is evaluated numerically through
quadrature rule, provided the poles and residues of the wall
reflection coefficient. However, this formulation is limited
to second order accuracy in time. Dragna et al. (2015) im-
proved the accuracy based on Auxiliary Differential Equa-
tions (ADE) method. By approximating the impedance with
rational function in Fourier domain, the convolution integral
can be converted to two auxiliary variable governing by a
set of first order PDEs and can be advanced in time with ar-
bitrary order of accuracy. As will be shown later, work pre-
sented in this paper uses a slightly variant of this method.
A thorough research on the well-posedness of TDIBC gas
been done by Rienstra (2006), who derived the mathemati-
cal and physical constraints on the impedance model to en-
sure the validity of TDIBC. Readers are suggested to refer
to this paper for interest.

All of the work mentioned above are carried out ei-
ther for the pure acoustic field, or under the framework of
low speed inviscid fluid. Applications of TDIBC in viscous
flow, especially wall bounded turbulent flow, have also been
investigated. Jiménez et al. (2001) performed an Direct Nu-
merical Simulation (DNS) of incompressible plane turbu-
lent channel flow over porous wall, in which the impedance
is purely real. It was found that the near wall structure has
been significantly altered, reflected by enhancement in near
wall spanwise-wise vorticity intensity. Locally blowing and
suction regions have been identified, which on average in-
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crease the mean wall shear stress. Similar effects are re-
ported by Scalo et al. (2015), who conducted a series of nu-
merical experiments of compressible turbulent channel flow
over complex wall impedance with isothermal wall condi-
tion, spanning a flow regime from nearly incompressible
(Mb = 0.05) to low subsonic (Mb = 0.5). Spanwise rollers,
exhibiting Kelvin-Helmholtz type behavior, are found to re-
place the typical stream-wise streaks. Theses structures are
confined in a so-called resonating buffer layer and change
only the near wall turbulent activities. The current work is
an attempt to investigate the applications of TDIBC in su-
personic turbulent flows, extending previous work by Scalo
et al. (2015).

PROBLEM FORMULATION
In this work, Large Eddy Simulations (LES) of

compressible turbulent channel flows over complex wall
impedance are investigated. The flow setup is shown in fig-
ure 1, with direction (x,y,z) = (x1,x2,x3) representing the
streamwise, wall-normal and spanwise drections, respec-
tively. The simulations are performed by solving full set of
Favre-filtered compressible Navier-Stokes equations. The
eddy viscosity model by Vreman (2004) is used for tur-
bulence closure. Periodic boundary condition is used for
streamwise and spanwise directions. Isothermal conditions
are applied at both walls. The top wall is kept impermeable
and TDIBC is applied at bottom wall for finite impedance.
No-slip conditions are used for streamwise and spanwise
velocities on both walls. Let δ ,aw and Tw be the channel
half-width, wall speed of sound and wall temperature. Also,
define bulk density ρb as ρb =< ρ >V , where the bracket
< ·> represents the volume average over the computational
domain. From here on, all quantities will be presented in
non-dimensional form based on these four variables unless
otherwise stated.

Figure 1. Flow setup for turbulent channel flow over per-
meable walls. Note that only the bottom wall is set to be
permeable, the streamwise and spanwise velocity compo-
nents at bottom wall are set to be zero.

TDIBC
In this subsection, the formulation of the time-domain

impedance boundary condition is introduced. For all work
presented here, the Auxiliary Differential Equation (ADE)
method (Dragna et al., 2015; Troian et al., 2017) is used for
TDIBC. The method is based on what is usually referred to
as recursive convolution method developed by Fung & Ju
(2004) (see also Fung et al. (2000) and Fung & Ju (2001) for
more details). This type of method utilizes the residue theo-
rem to evaluate the convolution integral that appears due to
the Fourier domain multiplication in (1). Method by Fung
& Ju (2004) uses the quadrature rule to evaluate the integral
and is limited to second order, while the ADE method relies
on an additional set of differential equations of auxiliary

variables that can be advanced together with the flow vari-
ables and thus can achieve arbitrary order in time. To apply
the method, it is more convenient to use the concept of wall

softness ̂̃W (ω) = 2/[1+Z(ω)] to relate the domain-leaving
wave vin

n and domain entering wave vout
n via

vin
n (t) =−vout

n (t)+
∫

∞

−∞

W̃ (τ)vout
n (t− τ)dτ (2)

Care must be taken when evaluating the convolution inte-
gral to avoid numerical instabilities, since there are several
constraints on TDIBC imposed by physical validity. These
constraints will limit the choice of parameters for a given
type of impedance model Z(ω). As clearly stated by Rien-
stra (2006) and summarized by Douasbin et al. (2018)

1. Passive wall assumption. In the scope of this paper,
the wall does not produce energy on its own. Thus the
acoustic intensity into the wall must always be positive.
This requires ℜ(Z(ω))≥ 0.

2. Reality of the signal. Since the pressure and wall nor-
mal velocity signals are pure real, the time-domain
correspondence z(t) of impedance Z(ω) must be real,
which needs Ẑ(ω) = Ẑ∗(−ω)

3. Causality. A physical process should not depend on
any information from the future.

The three-parameter impedance model (Tam & Auri-
ault, 1996) satisfying all above constraints is used for simu-
lations presented.

Z(ω) = R+ j(X+ω−X−1ω
−1) (3)

Here R is the acoustic resistance ; X+1 is mass-like reac-
tance and X−1 the spring-like reactance. The above con-
dition requires R ≥ 0 for this impedance model. Because
of causality, the integration in (2) cannot be performed for
τ < 0, ans also zeros of 1+ Z(ω) should all in the upper
ω-plane. In addition, since time is usually assumed to start
from zero, the upper limit of the integration can be replaced
by t. Then, equation (2) becomes

vin
n (t) =−vout

n (t)+
∫ t

0
W̃ (τ)vout

n (t− τ)dτ (4)

A sum of rational functions is sufficient enough to approx-

imate the wall softness ̂̃W (ω) (see Appendix and Douas-
bin et al. (2018)).Then the integral in equation (4) can be
replaced with the summation of n0 pairs of auxiliary vari-
ables ψ

(1)
k and ψ

(2)
k , with k = 1,2, · · ·n0. Each pair of the

variables are governed by the following equations

dψ
(1)
k (t)
dt

= ck−1ψ
(1)
k (t)−dk−1ψ

(2)
k (t)+ vout

n (t) (5)

dψ
(2)
k (t)
dt

= ck−1ψ
(2)
k (t)+dk−1ψ

(1)
k (t) (6)

The domain entering wave is then calculated by

vin
n (t) =−vout

n (t)+
n0

∑
k=1

2[akψ
(1)
k (t)−bkψ

(2)
k ] (7)

Please refer to Appendix for detailed derivation.
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Figure 2. Magnitude of admittance, versus dimensionless
frequency for various R (a) and various ζ (b).

Choice of Parameter Space
In current problem, the free parameters includes the

flow condition Mb and Reb, as well as the acoustic param-
eters in (3), i.e., R, X+1 and X−1. A reduction in param-
eter space is needed to reduce the computation cost. To
first ensure the flow speed is in the range of interest, two
bulk Mach numbers were chosen: Mb = 1.50,3.50. The
bulk Reynolds number Reb for each Mach number is se-
lected so that the viscous Reynolds number Re∗τ is kept the
same across different Mach numbers. The consideration
here is that the TDIBC is reacting to wall pressure fluctu-
ation, which is affected a lot by near wall turbulence struc-
ture. To achieve a structure-wise similarity, it is reasonable
to choose the bulk Reynolds number so that all cases share
similar Re∗τ . As the result, the flow conditions are chosen as
Reb = 5000,10000 for Mb = 1.50,3.50, respectively, which
corresponds to Re∗τ ≈ 220. To choose the acoustic parame-
ters, we first recast the three parameter model into the fol-
lowing form:

Z(ω) = R+ i
R+1
2ζ

[
ω

ωres
− ωres

ω

]
(8)

where ωres =
√

X−1/X+1 is the resonating frequency and
ζ = (1+R)/(2ωresX+1) is the damping ratio. In all sim-
ulations presented, the wall impedance is designed to re-
act to large vortical structures, characterized by large-eddy-
turnover frequency and thus we simply have ωres = 2πMb
in dimensionless form. The causality constraints requires
requires 0 < ζ < 1. To simplify the parameter space of the
problem, a value of ζ = 0.5 is chosen for all cases, which
is proved to give enough reaction in current simulations.
The resistance R has been reported to have strong effect on
the flow field Scalo et al. (2015). The acoustic admittance
Y (ω) = v̂n/ p̂ - the reciprocal of impedance (3) - is directly
related to wall permeability, as shown in figure 2. A high
value of admittance corresponds to high wall permeability,
and is strongly dependent on the resistance R. Values of
R = 0.10,0.50,1.00 are used to study its effect on the flow.

NUMERICAL SETUP
The filtered, Favre average compressible Navier-

Stokes equations are solved by using a six order compact fi-
nite differencing code developed by Nagarajan et al. (2003).
Biased compact schemes of third and forth orders are used
for spatial discretization of (near) boundary points. Explicit
time advancement schemes up to fourth order are available.
In current simulation, a fourth order six stages Runge-Kutta
scheme (Allampalli et al., 2009) is used for all simulations.

TURBULENT CHANNEL FLOWS
Impermeable Walls

The flow parameters for impermeable wall cases and
the grid resolution are listed in Table 1.

Table 1. Grid resolution for baseline cases with imper-
meable walls. All cases have the same domain size of
Lx×Ly×Lz = 12×2×4.

Case Mb Re∗τ ∆x+ ∆y+min ∆z+

M1.5Rinf 1.50 220.78 25.25 0.14 11.25

M3.5Rinf 3.50 221.79 39.25 0.31 21.85

The normalized mean streamwise velocity is shown in
figure 3. Here the transformation law for compressible wall-
bounded turbulent flow by Trettel & Larsson (2016) is used
to scale the statistics. Note that the distance from the wall
y∗ is calculated using the semi-local scale (Coleman et al.,
1995). For reference, the case with Mb = 1.50,Reb = 5000
by Ulerich et al. (2014), and incompressible results by
Moser et al. (1999) are also plotted. The case M1.5Rinf
over predict in the log-law region while M3.5Rinf agrees well
with the reference data.

10−1 100 101 102

y∗

0
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20

U
T
L

Mb = 1.50

Mb = 3.50

Ulerich et al. (2014)

MKM (1999)

Figure 3. Mean streamwise velocity of turbulent channel
flow over impermeable walls.

Figure 4 presents the contour of streamwise Mach
number at a wall normal location y∗ ≈ 15. The resemblance
of near wall structures between the two Mach numbers can
be visually confirmed, which is a result of choosing the
same viscous Reynolds number.

Permeable Wall
Parameters of permeable wall simulations are listed in

Table 2, together with grid resolution based on length scale
calculated with bottom wall properties. It should be pointed
out that all permeable wall simulations are performed with
a box size Lx× Ly× Lz = 8× 2× 4 to reduce the compu-
tational cost. The two-point correlation (not shown here)
indicates a sufficient box size. Note that the case M3.5R0.1
is found to have an extremely strong reaction near the wall,
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Figure 4. Contour plots of the instantaneous streamwise
Mach nubmer at y∗ ≈ 15 for case M1.5Rinf (top) and
M3.5Rinf (bottom).

severely limiting the computational speed and data obtained
is not enough for analysis yet.

Table 2. Parameters and resolutions of permeable wall
cases. For each Mach number, the bulk Reynolds number
Rb is the same as the corresponding impermeable wall case.

Case Mb R ∆x+ ∆y+min ∆z+

M1.5R0.1 1.50 0.10 32.58 0.22 16.29

M1.5R0.5 1.50 0.50 22.93 0.31 11.46

M1.5R1.0 1.50 1.00 21.20 0.30 10.60

M3.5R0.1 3.50 0.10 N/A N/A N/A

M3.5R0.5 3.50 0.50 59.37 0.48 29.68

M3.5R1.0 3.50 1.00 48.74 0.39 24.37

Alternation of Near Wall Structures The
first observation in flow over the permeable wall is the
change in near wall turbulence structures, as shown in fig-
ure 5. Here the Q-criterion, wall pressure fluctuation and
wall shear stress are shown for Mb = 3.50 over an imper-
meable and permeable wall. Dramatic changes appear in
the flow: the typical streamwise and hairpin vortices are
replaced by spanwise rollers, residing near the wall. The
non-zero wall normal velocity enhances the exchange of
the streamwise momentum adjacent to the wall, creating
low and high streamwise velocity regions that alternate in
the mean flow direction, leading to a same pattern in the
wall shear stress. Although the wall shear stress over a per-
meable wall has locally low-value spots, it is still in gen-
eral higher than an impermeable wall case on the mean.
High permeability causes a tremendous rise in the mean
wall shear - up to 156.66% in case M1.5R0.1. This enhance-
ment of the wall shear stress is also reported in incompress-
bile (Jiménez et al., 2001) and subsonic compressible cases
(Scalo et al., 2015). It is interesting to notice that the mean
shear stress at top wall also experiences changes. At cur-
rent stage it is hard to tell if this change in upper wall is

due to the domain size, or the implementation of TDIBC. It
will be left for future investigation. The near wall rollers are
found to have a strong interaction with the main flow at suf-
ficiently low resistance. Figure 6 shows the dilatation field
of case M3.5R0.5 in x− y plane at spanwise station z = 2.0,
exhibiting a wave-like pattern across the whole channel.

Figure 5. The comparison of near wall flow structures be-
tween M3.5Rinf(left column) and M3.5R0.5(right column).
Each column gives (from top to bottom) Q-criterion colored
by wall normal velocity, pressure fluctuation on the wall and
the wall shear stress.

Mean Flow Statistics Profiles of mean stream-
wise velocity with various lower wall permeability are
shown in figure 7. All the values are normalized with the
lower wall properties. The increase of mean wall shear
causes the mean streamwise velocity to deviate from the
baseline case. A decreasing acoustic resistance R, i.e., in-
creasing wall permeability results in a larger deviation of
the mean profile. The root-mean-square (RMS) wall nor-
mal velocity is plotted in figure 8. Due to the non-zero
wall permeability, pressure fluctuations at the wall induce
the non-zero wall normal velocity fluctuations, which ex-
plains the high value of RMS velocity right on the wall. As
expected, higher permeability leads to stronger reaction on
the wall and thus higher value of RMS wall velocity.

CONCLUSION
The supersonic turbulent channel flows over var-

ious wall acoustic permeability have been performed,
with wall acoustic properties modeled by time domain
impedance boundary conditions (TDIBC). A mass-spring-
damper impedance model is adopted for TDIBC, whose res-
onating frequency is tuned to the characteristic frequency
of energetic eddies. Simulation are performed for two
bulk Mach numbers Mb = 1.50,3.50 while keeping approx-
imately the same viscous Reynolds number Re∗τ . A wide
range of acoustic resistance R has been examined. Signif-
icant changes in near wall turbulent structures have been
observed for low enough acoustic resistance R, i.e., high
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Figure 6. An x− y plane contour plot of the dilation field
for Mb = 3.50 with impermeable wall (top) and permeable
wall (bottom with R = 0.50).
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Figure 7. Mean streamwise velocity profile with various
wall permeability for Mb = 1.50 (top) and Mb = 3.50 (bot-
tom).
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Figure 8. RMS wall normal velocity with various wall
permeability for Mb = 1.50 (top) and Mb = 3.50 (bottom).

enough wall permeability. Spanwise rollers replace the typ-
ical seen streawise streaks and hairpin vortices near the
wall, leaving a footprint of alternating pattern in pressure
and wall shear stress. Rollers are found to strongly interact
with the flow with sufficiently high wall permeability.
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APPENDIX
Auxiliary Differential Equations

Here the detailed derivations of ADE method are pro-
vided. The wall softness of n0 oscillators that appears in (4)
can be approximated by summation of rational functions:

̂̃W (ω)≈
n0

∑
k=1

(
µk

iω− pk
+

µ∗k
iω− p∗k

)
(9)

where the poles pk = ck + idk and residues µk = ak + ibk.
This form is sufficiently accurate for the three-parameter
impedance model and no more complications are needed.
Take the inverse Fourier transform of (9) and get

W̃ (t)=
n0

∑
k=1

(
µkepkt +µ

∗
k ep∗k t

)
H(t)

=
n0

∑
k=1

[
(ak + ibk)e

(ck+idk)t +(ak− ibk)e
(ck−idk)t

]
H(t)

=
n0

∑
k=1

[
2akeckt cos(dkt)−2bkeckt sin(dkt)

]
H(t)

with this, the convolution in equation (4), denoted as I =∫ t
0 W̃ (τ)vout

n (t− τ)dτ

I=
∫ t

0

n0

∑
k=1

[2akeckτ cos(dkτ)−2bkeckτ sin(dkτ)]vout
n (t− τ)dτ

=
n0

∑
k=1

∫ t

0
[2akeckτ cos(dkτ)−2bkeckτ sin(dkτ)]vout

n (t− τ)dτ

=
n0

∑
k=1

∫ t

0
2akeck(t−τ) cos(dk(t− τ))vout

n (τ)dτ

−
n0

∑
k=1

∫ t

0
2bkeck(t−τ) sin(dk(t− τ))vout

n (τ)dτ

Note that the last line utilizes the commutative property of
convolution. Now define

ψ
(1)
k (t)=

∫ t

0
eck(t−τ) cos(dk(t− τ))vout

n (τ)dτ (10)

ψ
(2)
k (t)=

∫ t

0
eck(t−τ) sin(dk(t− τ))vout

n (τ)dτ (11)

taking derivatives of ψ
(1)
k (t) and ψ

(2)
k (t) with respect to

time t we can obtain equation (5) and (6), then the domain-
leaving wave can be obtained by

vin
n (t) =−vout

n (t)+
n0

∑
k=1

2[akψ
(1)
k (t)−bkψ

(2)
k ] (7)
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And velocity or pressure fluctuation can be recovered from
the relation

v′(t)=
[
vin

n (t)+ vout
n (t)

]
/2 (12)

p′(t)=

{[
vout

n (t)− vin
n (t)

]
/2, top boundary[

vin
n (t)− vout

n (t)
]
/2, bottom boundary

(13)

Application of TDIBC in Compressible Turbu-
lent Channel Flows

To ensure the TDIBC is implemented correctly in the
turbulent channel flow, wall normal velocity and pressure
signals at the first grid point off the wall are taken to exam-
ine the cross spectrum contributions from each frequency.
The magnitude and phase of the spectrum are plotted in fig-
ure 9. Good agreement is achieved in the low frequency
range for both the magnitude and phase. The error gradu-
ally increases as frequency moves to higher values. Higher
values of R has larger error at resonating frequency, which
is probably due to the fact the signals are not taken on the
wall.
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Figure 9. Magnitude (top and shifted) and phase (bottom)
of cross-spectrum for Mb = 1.50 cases. The vertical dash
line implies the resonating frequency that TDIBC is tuned
to, where tb = δ/Ub.
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