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ABSTRACT
This paper presents a novel dynamic Large-Eddy Sim-

ulation methodology, termed Coherent-vorticity Preserv-
ing, or CvP (Chapelier et al., 2018), which relies on an
enstrophy-based eddy-viscosity correction that removes ex-
cessive subgrid dissipation in areas of the flow that are
well resolved by the grid and/or with negligible turbulent
fluctuation levels. CvP-LES has been successfully applied
to homogeneous isotropic turbulence, wall-bounded flows
(Chapelier et al., 2018), helical vortices (Chapelier et al.,
2019), and vortex rings (Yu et al., 2018b).

In this manuscript we focus on recent advancements
made in the application of CvP-LES to topologically com-
plex vortex knots, focusing on: (1) reconnection mecha-
nisms at moderately high Reynolds numbers (ReΓ = 2×
104) of a trefoil knot-shaped vortex, inspired by the experi-
ments of Kleckner & Irvine (2013), and (2) the dynamics of
formation of axial flow, generated during the reconnection
in the same setup. Axial flow is defined as flow velocity
oriented along the main direction of the vorticity vector; as
such, it yields a non-zero helicity. From the CvP-LES cal-
culations we in fact extract the probability density functions
of helicity during and after the reconnection event, demon-
strating the correlation of the axial flow with high helicity
fluctuations and its role in vortex bursting. This paper also
features a validation of the CvP methodology against ex-
perimental data and low-Reynolds number simulations, em-
phasizing the high-fidelity of the present numerical method-
ology for the representation of complex vortex reconnection
mechanisms.

INTRODUCTION
Viscous reconnection of vortices has raised a strong

interest in the fluid mechanics community for over sev-
eral decades. This fundamental process occurs in a variety
of flow configurations including the reconnection of large-
scale aircraft wake vortices reviewed by Spalart (1998), the
interaction of vortices shed from helicopter rotor blades, or
fine-scale mixing in turbulence studied by Hussain (1986).

The knotted vortex configuration is of particular in-
terest, as they feature viscous reconnection involving both
anti-parallel and orthogonal vortex tubes (Kida & Takaoka,
1987; Kleckner & Irvine, 2013; Scheeler et al., 2014;
Kimura & Moffatt, 2014). This vortex system also provides
an interesting framework for the study of the propagation of
Kelvin waves and axial flow along the vortex tubes that are
generated as a consequence of the reconnection process.

The present study introduces Large-Eddy simulations
of the dynamics of knotted vortices at a moderately high
Reynolds number, using the CvP-LES approach introduced
by Chapelier et al. (2018), which has been found suc-
cessful to predict the transition and turbulent breakdown
of temporally developing helical vortices (Chapelier et al.,
2019). A circulation Reynolds number of ReΓ = 20,000
is considered, made computationally feasible by the CvP-
LES methodology. Additional computations have been per-
formed in a separated work currently under review (Yu
et al., 2019).

The CvP calculations are first validated from a com-
parison against experimental vizualisations of the trefoil-
knot vortex dynamics made by Kleckner & Irvine (2013)
(not shown). The present numerical setup is also validated
against low-Reynolds DNS performed by (Kida & Takaoka,
1987) in terms of the evolution of the global helicity (not
shown). In this present contribution we focus on discussing
the axial flow and nonlinear dynamics of Kelvin waves gen-
erated by the vortex reconnection process are studied.

COHERENT-VORTICITY PRESERVING
LARGE-EDDY SIMULATION (CvP-LES)

The compressible, Favre-filtered Navier-Stokes equa-
tions are solved using a 6th order compact finite difference
scheme solver originally written by Nagarajan et al. (2003),
under continued development at Purdue University. The
solver is based on a staggered grid arrangement, providing
superior accuracy compared to a fully collocated approach
developed by Lele (1992). The compressible LES formal-
ism introduced by Lesieur et al. (2005) is adopted, and the
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Figure 1. Illustration of CvP turbulence sensor values on
helical vortices.

CvP-Smagorinsky closure is considered, which yields ac-
curate results for transitional and high-Reynolds number
flows (Chapelier et al., 2018). This approach aims at cor-
recting the eddy-viscosity using a turbulence sensor f (σ):

µ
CvP
t = f (σ)µt (1)

where σ is the ratio of test-filtered to grid-filtered enstro-
phy, which detects the onset of small scales in the flow with
only one additional filtering operation. In particular, the re-
gions in the flow with σ = 1 will be characterized by a co-
herent, low-wavenumber motion, while values lower than
1 indicate the presence of small scales (spectral broaden-
ing). Fully developed turbulence is characterized by the
threshold value σeq, which is found analytically based on
Kolmogorov’s model spectrum. The dependency of σ to
the degree of spectral broadening in the flow is illustrated
in the legend in figure 1. The function f (σ) is built such
that f (σ = 1) = 0 and f (σ = σeq) = 1. This function then
modulates the eddy viscosity to reduce the subgrid dissipa-
tion in the vicinity of coherent structures. The calibration
of σeq and the shape of the function f (σ) are detailed in the
work of Chapelier et al. (2018).

Validation of the CvP-LES methodology
Taylor-Green Vortex This section features a

validation of the present CvP-LES methodology from tran-
sitional Taylor-Green vortex computations at Re = 5000.
The computations are carried out in a periodic box in
which large vortices are initialized from analytical veloc-
ity and pressure profiles. The CvP-LES results are com-
pared against a DNS computation performed by Chapelier
& Lodato (2016), and filtered using a sharp spectral filter
with filter width matching the LES grid cutoff. Figure 2
shows the temporal evolution of the volume-averaged, non-
dimensional kinetic energy dissipation, and an excellent
agreement is found between CvP-LES computations and
the filtered DNS for various grid sizes. The results show the
capacity of the CvP sensor to deactivate the eddy-viscosity
in transitional regions and provide the right amount of sub-
grid dissipation when reaching the fully-developed turbu-
lent regime, independently of the level of resolution consid-
ered.

Transitional Helical Vortices In this section,
the CvP-LES methodology is applied to a configuration of
temporally developing double helical vortices, which is rep-
resentative of the wake past rotating devices, such as wind

Figure 2. Mesh convergence validation of the CvP-LES
methodology from Taylor-Green vortex computations at
Re = 5000. For the sake of clarity, the LES computations
using 723, 963 and 1203 grid points are shifted vertically.

turbines or helicopter rotor blades. A parallelepipedic com-
putational domain is considered, with periodic boundary
conditions yielding an infinite extent of the helical vortices
in the axial direction. The initial velocity field describing
the helical vortices is calculated using the Biot-Savart law.
This initialization procedure allows for defining arbitrarily
the helical pitch h, helical radius R, the vortex-core radius
rc and vortex-core circulation Γ. Additional details about
this particular configuration can be found in Chapelier et al.
(2019). Of particular interest is the ability of the present
CvP-LES methodology to capture accurately the growth
rates of the helical vortices instability with a minimal num-
ber of grid points to represent the vortex core. The growth
rates are quantified from the temporal evolution of the he-
lix vortex cores deviation compared to their initial position.
CvP-LES simulations are performed, featuring several non-
dimensional values of the helical pitch h/R, a Reynolds
number based on circulation ReΓ = 7000 and a vortex core
radius rc/h = 0.166 matching the experimental conditions
of Nemes et al. (2015). A coarse discretization with 7 grid
points per initial vortex cores is considered. To assess the
quality of the simulations during the transition of the helical
vortices, the evolution of the vortex-core deviation is shown
in figure 3. We can see that the growth rates match the
experimental results from for various values of the helical
pitch. This shows the ability of the present methodology to
capture accurately the transient dynamics of topologically
complex vortices. In figure 1, we can also see that after the
vortex breakdown occurring at then end of the transient pe-
riod, the CvP sensor activates the subgrid dissipation only
where smaller scales are developing, allowing for an accu-
rate representation of the larger vortices dynamics carrying
the bulk of the flow kinetic energy.
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Figure 3. Temporal evolution of the averaged vortex-core
deviation in the computational domain from CvP-LES sim-
ulations at ReΓ = 7000 featuring four different values of the
helical pitch h/R (Chapelier et al., 2019). The dashed lines
represent the instability growth rates extracted from the ex-
periments of Nemes et al. (2015).

CvP-LES OF A TREFOIL VORTEX
Problem Formulation

The trefoil knotted vortex is initialized using a vortex
filament, as shown in figure 4, in a periodic, cubic box, de-
fined using the following parametric equation:

x(θ) = Rmin[sin(θ)+2sin(2θ)]

y(θ) = Rmin[cos(θ)−2cos(2θ)]

z(θ) =−hsin(3θ)

(2)

where Rmin is the minimum radius which is related to the
maximal radius in the x−y plane as Rmax = 3Rmin. The knot
radius averaged along the vortex line is R ≈ 0.748Rmax. h
is a parameter that determines the extent of the knotted vor-
tex in the propagation direction and is selected as h = Rmin.
This choice of h has been considered in previous works
for the computation of trefoil-knotted vortices, see Kida &
Takaoka (1988). The velocity field induced by the vortex
filament is determined by integrating numerically the Biot-
Savart law:

u(x) =− Γ

4π

∫
Kv

(x−X(θ))× t(θ)
|x−X(θ)|3

dθ (3)

where t(θ) is the tangent vector to the helical filament, with
a given circulation Γ and smoothing kernel Kv(rc), a func-
tion allowing to define the shape of the vortex core as pro-
posed by Vatistas et al. (1991), where rc is the vortex core
radius.

The simulations are performed in a cubic computa-
tional domain Ω = [0,15Rmin]

3 with periodic boundaries
in all directions. Simulations are run with R = 35 mm,
h = Rmin, ν = 10−6 m2/s. The vortex core radius is cho-
sen as rc/R = 0.06 and the Reynolds number based on cir-
culation ReΓ = 20,000. These parameters correspond ap-
proximately to the conditions in Kleckner & Irvine (2013),
where ReΓ ∼ 10000, R = 45 mm and rc ∼ 2 mm. With 5763

grid points and 11 points in the initial vortex cores, the flow
topology is found to be essentially the same between the

Figure 4. Initial vortex shape defined via the parametric
equation 2

simulation (see Yu et al. (2018a)) and experiment empha-
sizing the accuracy of the CvP-LES methodology coupled
with high-order schemes.

Global Flow Evolution
In this section, a physical study of the present flow

problem is carried out from a CvP-LES simulation. To
track the flow evolution, a non-dimensional time t? = tΓ/R2

is defined. The characteristic evolution stage can be sum-
marized in figure 5. The initial knotted vortex propagates
along, and rotates about the z-axis, then gradual distortion
and elongation of the vortex filament are observed. This
leads to the stretching of the vortex line and reconnection of
vortex filaments at three different locations (t= 2.59). Af-
ter this reconnection event, two distinct vortical structures,
initially triangular in shape, are generated and evolve inde-
pendently from each other. These processes are common
among cases with different Reynolds numbers (Yu et al.,
2019). While the enstrophy, ξ = ω2/2, used here to infer
the small-scale energy content of the flow, increases with
Reynolds numbers as shown in background curves, the flow
topology does not show large variations. which is visual-
ized by the large structures. The cascaded reconnection and
secondary reconnection occur for high and low Reynolds
numbers, respectively after long time simulation as shown
in (Yu et al., 2019). The present study focuses mainly on
the dynamics of the separated large ring on ReΓ = 20,000.

Figure 5. Variation of the flow topology with dimension-
less time and Reynolds numbers, indicated in various col-
ors.

Reconnection process generates perturbations on the
larger ring which propagate as Kelvin waves along the vor-
tex tube, triggering axial flow. These Kelvin wave-packets
propagate away from the reconnection region, in opposite
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directions, and exhibit opposite handedness of helix-shaped
structures. The helical structures traveling along each single
side of the triangular shaped vortex ring periodically col-
lide with each other, then continue to travel past one an-
other. This process can be clearly seen in figure 7, where
the vortex structure is visualized by Q-criterion and colored
by helicity density h = u ·ω , so that the red and blue wave
packets are propagating towards opposite direction.

Figure 6. Diagram of local coordinates system along vor-
tex centerline, in cylindrical (r̃, φ̃ , z̃ )

The velocity is extracted along the instantaneous vor-
tex line and projected onto the tangential direction z̃ to ob-
tain the axial velocity w̃. The local coordinate (r̃, φ̃ , z̃) and
local velocity ũ = ũr̂+ ṽφ̂ + w̃ẑ are defined correspondingly
as shown in figure 6. A spectral study is conducted based
on the axial flow energy defined as

Ew̃(k`, t) =
1

`(t)

∫
`
ρw̃2(0,0, z̃, t)e− j2πkz̃dz̃, (4)

where `(t) is the instantaneous length of the large vortex
ring. Figures 7, (a)− (c) display the modal energy distri-
bution for axial flow after reconnection on the large vortex
ring. The mode m = 3a (a is integer) is always dominant
due to the triple symmetry of the structure. After the re-
connection, a perturbation in the form of axial flow is ex-
cited at the bridge, moving in both directions away from
the reconnection region. At t∗ = 3.375, m = 6 dominates
corresponding to the well-developed axial flow that travels
along the vortex tube. At t∗ = 3.712, the axial flow collides,
yielding a negative interference (axial flow becomes null,
the vortex temporarily bursts). After the collision, the axial
flow wavepackets propagate past each other and the energy
is restored, however with a modification in the energy dis-
tribution over modes, with less energetic lower modes and
more energetic higher modes, i.e. higher wavenumbers.

Kelvin Waves Propagation
The current LES shows that the wave packets propa-

gating in the opposite direction collide and pass by, similar
to the linear wave propagation. After multiple collision cy-
cles, higher order axial modes get generated and distributed
in different location along the vortex rings (see figure 8),
which implies the existence of a dispersive behavior. To
quantify the dispersion relationship, the oscillation pattern
for each mode is studied (figure 9), and the characteristic os-
cillation frequency ( f ) is determined correspondingly. The
collision of wave packets at tΓ/R2 ∼ 3.7 results in a nulli-
fication of energy for dominant modes, which can also be
observed in figure 9, where a rapid decrease occurs during

Figure 7. Oscillation frequencies and wavenumbers show
linear relationship.

Figure 8. (a) The first collision of kelvin waves in the
form of compact wave packets; (b) after 3-4 collisions, the
wave component distribute uniformly on the vortex loop.

the collision, modifying the original oscillation pattern of
each mode. Such modification effect is more apparent for
lower wavenumbers (k`= 1−5).

Figure 9. Then axial component energy along centerline
oscillate with characteristic frequency for first then axial
modes after reconnection (tΓ/R2 ∼ 2.5); (a) k`= 0−5; (b)
k`= 6−7

The group velocity vg and phase velocity vp can be de-
termined from dispersion relation shown in figure 10 as

vg =
d f
dk

, vp =
f
k
. (5)

In the current simulations, vg ≈ vp, which shows that min-
imal dispersion is captured during the propagation of the
Kelvin wave packets. As shown in figure 8 (b), after multi-
ple collisions, the axial flow wave packets spread into mul-
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Figure 10. Oscillation frequencies and wavenumbers
show linear relationship.

tiple wave packets, indicated by alternating direction of the
axial flow. Such phenomenon suggests the separation of the
higher wavenumbers along the vortex tube indicating dis-
persion. Moreover, the presence of higher modes of axial
flow also indicates the nonlinear nature of the perturbations
generated upon reconnection. With higher spatio-temporal
resolution, the dispersion can be better quantified in the sim-
ulations.

Centerline and Tube-based Energy
The centerline axial energy oscillation shown in fig-

ure 9 indicates that the energy is either redistributed into
the normal direction, or away from the centerline. To study
this, we study the evolution of total kinetic energy and the
axial kinetic energy at the centerline, defined as,

Ea,c =
1
2

∫
`(t)

ρw̃2dz̃,

Etot,c =
1
2

∫
`(t)

ρ(ũ2 + ṽ2 + w̃2)dz̃,
(6)

where `(t) denotes the instantaneous length of the whole
knotted structure before reconnection, and only that of the
larger ring after reconnection. On the centerline, the axial

Figure 11. Total kinematic energy Etot,c (solid line) and
the component along axial direction Ea,c (dashed line) on
vortex centerline. After reconnection, only energy of large
ring are shown.

component of the velocity dominates before and after the
reconnection. After reconnection, the kinetic energy is re-
distributed in the normal directions shown by the difference
between the curves shown in figures 11. Moreover, after the
collision of axial flow modes, both the total energy and the
axial energy along the centerline rapidly drop indicating the
energy outflow from the centerline. This can also be real-
ized in the visualization of “hollow structures” formed upon

collision, as shown in figure 12. To visualize the hollow
structure, lower value of Q-isosurface is chosen in compar-
ison to the one chosen in figure 7(b) (which is at the same
time instant).

Figure 12. Formation of hollow structure when two wave
packets colliding.

The axial flow collision does not cause abrupt changes
in the global energy as shown previously by Yu et al.
(2018a). However, the variation of total kinetic energy
within the vortex tube can be used to determine the vari-
ation of transverse velocity within the tube. To this end, we
define the total kinetic energy and the axial kinetic energy
inside the vortex tube as,

Ea,tube =
1
2

∫∫∫
Ω

ρw̃2dΩ,

Etot,tube =
1
2

∫∫∫
Ω

ρ(ũ2 + ṽ2 + w̃2)dΩ,

(7)

where Ω denotes the vortex tube volume of whole knot-
ted structure before reconnection, and only that of the large
separated ring after reconnection. Volume Ω has a bound-
ary defined as the location of vorticity magnitude |ω| =
0.05|ω|axial on each normal plane.

Before reconnection, the total energy increases faster
than the axial component, so that the vortex stretching re-
sults in more energy on rotation than axial motion. After
reconnection, the total kinetic energy within the tube is al-
most invariant, as shown in figure 13 (solid line). Moreover,
the axial kinetic energy shows gradual increase after recon-
nection before the collision of the axial flow components,
indicating velocity generated in axial direction due to the
perturbations from reconnection. Upon collision of the ax-
ial flow, the total energy inside the tube remains almost in-
variant, however the total axial energy decreases, indicating
redistribution of energy in transverse velocity components.
This also highlights the local nature of the axial flow colli-
sion within the tube. Even though the centerline and total
axial energy get cancelled during the collision, the total en-
ergy does not vary due to the redistribution of velocity to
the components normal to the vortex tube.

Figure 13. Total kinematic energy Etot,tube(solid line) and
the component along axial direction Ea,tube(dashed line) in-
tegrated in vortex tube.
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CONCLUSION
Simulation of the vortex reconnection occurring in

trefoil-knotted vortices configuration has been carried-out
using a novel methodology for Large-Eddy Simulation,
named Coherent-vorticity Preserving (CvP). The ability of
the CvP turbulence sensor to sort the large, coherent scales
from the small, chaotic structures has been assessed from
visualizations of the Q-criterion colored by the values of
the sensor.

This methodology is found to be successful as well
for the quantitative prediction of various other flow con-
figurations. CvP-LES simulations of the Taylor-Green vor-
tex at Reynolds Re = 5000 highlighted the ability of the
methodology to accurately describe the transition and sub-
sequent fully-developed regime considering various grid
resolutions. Accurate instability growth rates have also
been obtained in the context of temporally-developing dou-
ble helical vortices with coarse grids featuring a minimal
number of grid points for discretizing the initial vortex
cores.

In present sutdy, a study of high-Reynolds number vor-
tex reconnection mechanisms and Kelvin waves propaga-
tion has been carried out from Cvp-LES computations of
trefoil knotted vortices. The numerical simulation of the tre-
foil knotted vortex shape shows a vortex filament entangle-
ment process in three locations of the main structure lead-
ing to the separation of this structure in two distinct vor-
tices.Such reconnection results in large perturbations that
excites the Kelvin waves coupled with axial flow propagat-
ing along both separated vortex rings.

The present study focused on such wave packets prop-
agating on the large vortex ring, in the form of opposite
handedness helical structures, which travel along the vortex
loop, collide, and pass by each other. The spectral study
based on the axial flow energy reveals the cancellation of
most modes during the collision and the independent oscil-
lation of each mode before collision.

The evaluation of the characteristic oscillation fre-
quency shows minimal dispersion captured by the current
LES methodology. The small amount of dispersion cap-
tured in the simulations only causes the spreading of wave
packets after several collision cycles. Improved estimates
of the dispersion relations for the Kelvin waves can be ob-
tained using higher resolution simulations.

The axial velocity dominates on the center line during
the evolution, except during the collision, when the energy
leaves the centerline, as well as the axial velocity compo-
nent. Such transer is highly local and also required DNS
resolution for more quantitative analysis.
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Lesieur, M., Métais, O. & Comte, P. 2005 Large-Eddy sim-
ulations of turbulence. Cambridge University Press.

Nagarajan, S., Lele, S.K. & Ferziger, J.H. 2003 A robust
high-order compact method for large eddy simulation. J.
Comput. Phys. 191, 392–419.

Nemes, A., Lo Jacono, D., Blackburn, H. M. & Sheridan, J.
2015 Mutual inductance of two helical vortices. J. Fluid
Mech. 774, 298–310.

Scheeler, M. W., Kleckner, D., Proment, D., Kindlmann,
G. L. & Irvine, W. T. M. 2014 Helicity conservation by
flow across scales in reconnecting vortex links and knots.
Proc. Natl. Acad. Sci. 111 (43), 15350–15355.

Spalart, Philippe R. 1998 Airplane trailing vortices. Annual
Review of Fluid Mechanics 30 (1), 107–138.

Vatistas, G. H., Kozel, V. & Mih, W. C. 1991 A simpler
model for concentrated vortices. Exp. Fluids 11 (1), 73–
76.

Yu, Z., Chapelier, J.-B. & Scalo, C. 2018a Coherent-
vorticity preserving large-eddy simulation of trefoil knot-
ted vortices. 2018 AIAA Aerospace Sciences Meeting .

Yu, Z., Chapelier, J.-B. & Scalo, C. 2018b Coherent-
vorticity preserving large-eddy simulation of vortex rings
under large perturbations. 2018 AIAA Fluid Dynamics
Conference .

Yu, Z., Chapelier, J.-B. & Scalo, C. 2019 Large-eddy simu-
lation of trefoil knotted vortices. submitted to Journal of
Fluid Mechanics .

6


