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ABSTRACT
A Bayesian optimisation framework is used to optimise

low-amplitude wall-normal blowing control of a turbulent
boundary-layer (TBL) flow in order to achieve skin-friction
drag reduction and net-power saving. The study is carried
out using Direct Numerical Simulations (DNS) and Implicit
Large Eddy Simulations (ILES). Control performance is as-
sessed by using the power consumption from two different
sets of experimental data from two different types of blow-
ing device. The simulations demonstrate that wall-normal
blowing control can generate a local skin-friction drag re-
duction of up to 75%, which persists far downstream of the
control. This slow spatial recovery of the skin-friction co-
efficient back to its canonical counterpart can generate net-
power savings up to 5% in the present study. When com-
bined with DNS or ILES, Bayesian optimisation, with its
fast convergence (within a dozen iterations with three pa-
rameters to optimise) is an ideal tool to find the optimal set
of parameters to maximise net-power saving. The evolu-
tion of the skin-friction coefficient is decomposed using the
Fukagata-Iwamoto-Kasagi (FIK) identity, which shows that
the generation of the net-power savings is due to changes in
contributions to both the convection and streamwise devel-
opment terms of the turbulent boundary-layer flow.

INTRODUCTION
Skin-friction drag reduction is a topic of great inter-

est due to its importance in many engineering applications.
As an example, just a 3% reduction in the skin-friction of a
long-range commercial aircraft would save £1.2m in jet fuel
per aircraft per year and prevent the annual release of 3,000
tonnes of carbon dioxide. Despite many decades of exten-
sive research, a practical and affordable method for skin-
friction drag reduction is yet to be found and implemented
in real-world applications. Various strategies, which in-
clude polymer additives, riblets, vibrators, microelectrome-
chanical systems, gas microbubbles, hydrophobic coating
and large eddy breakup devices have been developed in the

last decades to reduce skin-friction drag. Adding polymer
additives to a liquid flow, for instance, can reduce skin-
friction drag by more than 70%, yielding a phenomenon
known as Maximum-Drag-Reduction (Virk (1975)). For
air flows, however, the energy expenditure of typical active
drag reduction strategies can be very high, often leading to
net-power loss even if substantial skin-friction drag reduc-
tion is obtained.

In the present work we focus on the spatial develop-
ment of a zero pressure gradient turbulent boundary layer
and the resulting wall friction after control has been ap-
plied locally using vertical wall-blowing as a drag-reducing
strategy. It is well know that low-amplitude wall-normal
blowing (less than 1% of the free stream velocity) can
substantially reduce skin-friction drag. Recent simulations
by Kametani & Fukagata (2011) and Stroh et al. (2016)
have shown that it is possible to achieve up to 60% lo-
cal skin-friction reduction with uniform blowing at moder-
ate Reynolds numbers, which persists to tens of boundary-
layer thicknesses downstream of the control. A series of
Large-Eddy Simulations (LES) of turbulent boundary-layer
flows with wall-normal blowing control were performed by
Kametani et al. (2016) with a focus on the effect of intermit-
tent blowing along the direction of the flow. By considering
only part of the input power required to generate the wall-
blowing, namely the pressure difference across the blowing
wall, a very optimistic idealised net-power saving of around
18% was predicted.

Employing a reliable optimisation method to determine
the optimal parameters of a vertical wall-blowing control
technique could potentially lead to substantial net-power
saving. Bayesian Optimisation (BO) is a derivative-free al-
gorithm that works efficiently with expensive non-convex
objective functions (Gelbart et al. (2014)). BO plays a
prominent role in efficiently optimising the parameters of
machine learning algorithms, such as Neural Networks,
with superior performance when compared to more stan-
dard approaches (Snoek et al. (2012); Brochu et al. (2010)).
BO is yet to be used for fluid flow problems and very few

1



11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11)
Southampton, UK, July 30 to August 2, 2019

studies combining DNS/LES and BO have been published
to date.

BAYESIAN OPTIMISATION
In the present study, a Bayesian Optimisation (BO) al-

gorithm is used to achieve drag reduction and net-power
saving. Generically, BO algorithms seek to minimise a cho-
sen objective function over a given set of parameter val-
ues based on previous observations. BO algorithms have
two stages. First, given knowledge of the objective at a
known set of parameters, a probability density function for
the objective function (in our case, the objective function
is the net-power saving, also known as posterior) is com-
puted. This encapsulates a best guess of the objective and
quantifies the uncertainty of the approximation. Second, an
acquisition function is minimised to determine the next set
parameter values to be sampled. This typically involves a
trade-off between minimising the expected objective and re-
ducing the uncertainty of its approximation.

For a simple illustrative example of the BO algorithm,
consider a 1D problem that has a noise-free objective func-
tion, f (x) = −sin(x)/x, for −2 ≤ x ≤ 1. Figure 1 shows
the development of the posterior distribution over four iter-
ations of the BO algorithm. Near the training points (black
markers), the posterior mean (red curve) and the true func-
tion (black curve) match and the posterior uncertainty van-
ishes; conversely, the uncertainty of the predictive model in-
creases with distance from the observation points. The first
new input parameter x2 (figure 1 b) corresponds to the low-
est value of the posterior mean. Subsequently, since x2 is
close to the lowest value of the new posterior mean (almost
unchanged from the previous figure), the BO algorithms se-
lects a testing point x3 (figure 1 c) in a region of high un-
certainty. As it can be seen for this small example, the true
minimum of the objective function is found very quickly.

(a) (b)

(c) (d)

Figure 1: An example of using Bayesian Optimisation to find
a local minimum on a 1D toy problem. The black curve is the
true objective function, black solid circles are the observed points,
the red curve is the posterior mean and the red shaded area is the
posterior uncertainty.

NUMERICAL METHODS
In order to generate the data for the BO studies, simu-

lations of a turbulent boundary layer need to be performed
efficiently. The incompressible Navier-Stokes equations are
solved on Cartesian mesh using the high-order flow solver
Incompact3d, which has been adapted to parallel super-
computers using a powerful two-dimensional (2D) domain
decomposition strategy (Laizet & Li (2011)). The equations
are spatially discretised using sixth-order finite-difference
schemes, and a second-order semi-implicit scheme for the
time advancement. The Poisson equation, which is required
to satisfy the incompressibility condition, is solved in spec-
tral space to avoid expensive iterative solvers. More details
about Incompact3d can be found in (Laizet & Lambal-
lais, 2009). Note that it has been used recently for DNS
of turbulent boundary-layer flows for a detailed wall-shear
stress study (Diaz-Daniel et al. (2017)). The present sim-
ulations are performed on a domain size Lx × Ly × Lz =
(750×40×15)δ0, where Lx, Ly and Lz are the streamwise,
vertical and spanwise directions, respectively, as seen in fig-
ure 2. δ0 is the thickness of the boundary layer at the inlet.
A Blasius profile with Reθ = 170 (based on the momen-
tum thickness θ and the free stream velocity U∞) is im-
posed at the inlet, followed by a tripping zone in order to
trigger turbulence transition. Periodic boundary conditions
are applied in the spanwise direction, Neumann conditions
are applied at the top boundary and 1D convection equation
is solved for the outlet boundary condition. No-slip bound-
ary condition is applied at the wall except in the control
region which extends between Reθ = 470 : 700 where the
normal velocity can be non-zero. For the canonical case,
Reθ ≈ 2100 at the end of the domain.

Figure 2: Schematic of the computational domain (left), and the
wall normal velocity in the control region (right)

Small-amplitude wall-normal blowing is applied to the
turbulent boundary-layer flow in search of a wall-normal
blowing control strategy which would yield a skin-friction
drag reduction with a net-power saving. The BO algorithm
is used to search over three control parameters simultane-
ously. The parameters chosen for this study are the wall-
normal blowing coefficient CB = vw/U∞ (vw is the vertical
velocity at the wall), the number of streamwise blowing ar-
eas within the control area of streamwise extent LB, NB and
the blowing coverage coefficient, α = λ1NB/LB. As seen in
figure 2, steady wall-normal blowing is applied uniformly
in the spanwise direction, across the full extent of the con-
trol area, with λ1 and λ0 denoting the streamwise extent of
blowing and non-blowing sections, respectively. The con-
trol region is located at a distance xBs = 68δ0 from the in-
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let with a streamwise extent LB = 77δ0, corresponding to
470≤ Reθ ≤ 700 in the canonical flow.

In the first part of this study, the BO is using Direct
Numerical Simulation (DNS). The computational domain
is discretised using nx× ny× nz = 3073× 321× 128 mesh
nodes. The mesh size in wall viscous units for Reθ = 365 is
∆x+ = 16.6,∆y+ = 0.53 : 135.5 and ∆z+ = 8 in the stream-
wise, normal and spanwise directions, respectively. The
second part of the study is based on Implicit Large Eddy
Simulations (ILES). The compact finite-difference schemes
used in Incompact3d can be modified at no extra cost in
order to add some artificial dissipation at the small scales
using the numerical error of the schemes (Dairay et al.
(2017)). It is possible to control the amount of artificial dis-
sipation near the cut-off wave number and for the present
study, it was found that the artificial viscosity is nine times
the value of the physical viscosity (only at the small scales)
in order to get the same quality of results between the
DNS and the ILES. The computational domain for the ILES
is discretised using nx × ny × nz = 1537× 257× 64 mesh
nodes. The mesh size in wall viscous units for Reθ = 365
is ∆x+ = 33,∆y+ = 0.57 : 500 and ∆z+ = 16 in the stream-
wise, normal and spanwise directions, respectively. Addi-
tionally, the ILES time step is twice the DNS time step so
the cost of a ILES is 16 times less than the cost of a DNS.

Net-power Saving
The net-power saving S generated by each wall-normal

blowing control strategy is assessed by taking into account
the input power required to generate the wall-normal blow-
ing plus any power saving due to a reduction in skin-friction
drag. Due to the long-lasting downstream effects of the
low-amplitude wall-normal blowing control, a global skin-
friction drag coefficient C f is evaluated over a streamwise
distance L = 615δ0 with

C f =
1
L

∫ 650δ0

35δ0

c f (x)dx. (1)

The reduction in C f is referred to as the global drag reduc-
tion (GDR). The net-power saving S is defined as

S =
Cw−Cw0

Cw0
, (2)

where Cw0 is the power coefficient of the canonical case.
The gross power input coefficient for controlled case Cw =
Cwτ +Cwb is equal to the sum of the mean viscous power
coefficient Cwτ to overcome the shear stress, and the blow-
ing power coefficient Cwb. In our simulations the blowing
is imposed via a boundary condition at the wall for the ver-
tical velocity. As a result, Cwb can only be estimated using
experimental data, in our study from two different blowing
systems. The first system Sys1 was developed by Kornilov
& Boiko (2012). It is based on a pressurised chamber on
one side of a micro-drilled plate to blow air with low in-
tensity. A relationship between the pressure drop through
the plate and CB was provided, however, the authors did not
indicate the power required to compress the air in their sys-
tem. For Sys1, only the pressure drop is taken into account
so the blowing power estimation is not really accurate. Cwb
is expressed as

Cwb = (CpCB +C3
B)αt , (3)

where αt is the ratio of the blowing region to the total area
over which the global drag is calculated. Cp is the pressure
coefficient of the pressure difference across the permeable
wall. The pressure coefficient Cp was measured at a free-
stream velocity of U∞ = 21m/s and is proportional to the
wall-normal blowing amplitude, with Cp = 124CB.

The second system Sys2 is currently being developed at
the University of Newcastle (UK) and is based on miniature
electromagnetic speakers to blow low-intensity air across a
micro perforated plate. The instantaneous total power in-
put for the speakers as a function of the blowing velocity
is used to compute the potential net-power saving. Based
on experimental data, the averaged speaker power PB per
unit area A as function of the wall normal velocity vw is
PB/A = 3169v3

w−970.3v2
w +256.2vw and

CwB =
PB

1
2U3

∞At
. (4)

At is the total area over which the global drag reduction is
estimated. This relation is used to estimate the net-power
saving for Sys2 with an accurate calculation of the power
associated with the speaker-based wall blowing device.

RESULTS AND DISCUSSION
The main goal of this study is to evaluate the ability of a

Bayesian Optimisation (BO) framework fed by DNS data to
find an optimal set of parameters to achieve substantial drag
reduction and/or net-power saving for a turbulent bound-
ary layer using a wall blowing device. The drag reduc-
tion mechanisms from the most promising sets of param-
eters will be investigated using the well-known Fukagata-
Iwamoto-Kasagi (FIK) identity. Furthermore, we will also
see if it is possible to use ILES data instead of DNS data
to feed the BO framework in order to reduce the cost of the
optimisation. Finally, we will investigate the potential of a
time modulation for the wall blowing with the aim to re-
duce the cost of the blowing and potentially generate higher
levels of net-power saving.

BO study based on DNS
Two Bayesian optimisation studies are conducted

based on the experimental data Sys1 (BO1) and Sys2 (BO2).
The associated net-power saving is referred to as S1 and S2,
respectively. Table 1 and Table 2 summarises the blowing
parameters, the maximum local drag reduction , the mean
drag reduction over L and net-power saving (a negative sign
is associated to an energy loss). For both studies, the first
three cases 1,2 and 3 have parameters that are selected arbi-
trarily while case 0 correspond to a canonical TBL with no
control.

18 DNS were performed for BO1 with the aim to op-
timise the net-power saving (not the global drag reduction).
It can be seen that after 14 DNS the data are converged with
virtually no change in the net-power saving for the last 4
DNS. As seen in table 1, BO1 predicts that uniform blow-
ing with low wall velocity (vw ≈ 0.3% of U∞) would lead
to a net-power saving of 5% with an averaged drag reduc-
tion over L of≈ 8% and a local maximum drag reduction of
≈ 36% (Case 13 in blue). As it can be seen for Case 5 (in
red), more than 75% of local drag reduction can be achieved
however with a substantial energy loss of nearly 10%. It is
important to mention that for Sys1, the power calculation for
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Table 1: Wall-normal blowing parameters, maximum local drag
reduction and averaged drag reduction and net-power saving of the
first Bayesian optimisation. The grey line is the canonical turbulent
boundary-layer. The blue line indicates the case with the highest
net-power saving. The red line indicates the case with the highest
drag reduction over L.

Case
BO1

CB
×100 NB α

Max
DR GDR S1

0 0 − − − − −
1 0.5 1 1 52 13.2 3.2
2 0.5 1 0.47 48.5 6.0 1.3
3 0.5 1 0.24 49 2.9 0.6
4 0.37 5 0.9 39.3 9.3 4.3
5 1 10 0.78 75.5 19.8 -9.5
6 0.03 1 1 39.5 0.9 0.9
7 0.42 3 0.95 45 11.0 3.8
8 0.40 6 0.88 41 9.6 3.1
9 0.23 8 0.82 39.5 5.4 3.3

10 0.14 1 0.06 39.5 0.4 0.3
11 0.0 10 0.78 39.5 -0.5 -0.5
12 0.6 10 0.78 54.2 12.3 1.5
13 0.29 1 1 36.3 8.3 5.0
14 0.39 1 1 41 10.4 4.5
15 0.3 1 1 39 8.4 4.8
16 0.29 1 1 39.5 8.1 4.8
17 0.29 1 1 39.5 7.9 4.6
18 0.28 1 1 39.5 7.6 4.5

this blowing device is underestimated as the power required
to compress the air is not taken into account. This first BO
study is clearly showing that high levels of drag reduction
are not necessarily required to generate net-power saving.

Table 2: Wall-normal blowing parameters, maximum local drag
reduction and averaged drag reduction and net-power saving of the
second Bayesian optimisation. The red row indicate the highest
drag reduction, and the blue row is a case for which net-power sav-
ing is achieved with intermittent blowing.

Case
BO2

CB
×100 NB α

Max
DR GDR S2

0 − − − − − −
1 0.5 1 1 52 13.2 1.2
2 0.5 1 0.47 48.5 6.0 0.3
3 0.5 1 0.24 49 2.9 0.0
4 0.41 2 0.24 37 2.5 0.2
5 0.51 1 0.25 47.5 3.1 0.2
6 0.7 1 0.23 60.5 4.1 0.5
7 0.42 1 0.22 39 2.2 0.0
8 0.93 5 0.23 51.5 5.6 0.7
9 0.88 4 0.24 55 5.3 0.7

10 0.79 3 0.23 57 4.6 0.5
11 0.80 2 0.23 63.5 4.7 0.6

In BO2, the total power input of the blowing device is
taken into account so the evaluation of the net-power sav-
ing is more realistic. The first three simulations used the
same blowing parameters as in BO1. 11 DNS are carried
out for this second BO study. It can be seen that the results

are fairly different when compared to the first BO study.
Table 2 shows the parameters chosen by the Bayesian opti-
misation framework as it searches through parameter space
to achieve a global skin-friction drag reduction with a net-
power saving. After 6 iterations the Bayesian optimisation
framework predicts that a short intense uniform blowing
strategy will achieve a local maximum skin-friction drag re-
duction of 60.5% and a global skin-friction drag reduction
of 4.1% with a net-power saving of 0.5% (Case 6 in blue).
Interestingly, it is also possible to generate a net-power sav-
ing of 0.7% (Case 8 in red) with an intermittent blowing
and low intensity blowing. The highest net-power saving is
achieved in Case 1 with more than 1% of net-power saving.

Figure 3: Streamwise evolution of the friction coefficient.

The local skin-friction coefficient versus Reθ is plotted
in figure 3. It can be seen that most of the drag reduction is
achieve over the control area (in pink). It can be seen that
the drag reduction persists for several hundred boundary-
layer thicknesses downstream of control with a slow spatial
recovery back to the canonical case. These results are con-
sistent with previously published numerical data in a similar
set-up (Stroh et al. (2016)). This figure highlights the fact
that the BO framework has the potential to find different
sets of parameters to achieve net-power saving and that the
long lasting drag reduction effect downstream of the control
area is responsible for the net-power saving.

FIK identity
Fukagata et al. (2002) derived an expression of the

skin-friction coefficient for incompressible turbulent flows.
Their expression is known as the Fukagata-Iwamoto-Kasagi
(FIK) identity. For spatially developing boundary layers
which are homogeneous in the spanwise direction, the FIK
identity can be expressed as

cFIK
f (x) =

4(1−δ ∗)

Reδ︸ ︷︷ ︸
cδ

f

+4
∫ 1

0
(1− y)(−u′v′)dy︸ ︷︷ ︸

cT
f

+4
∫ 1

0
(1− y)(−ūv̄)dy︸ ︷︷ ︸

cC
f

−2
∫ 1

0
(1− y)2

(
∂ ūū
∂x

+
∂u′u′

∂x
− 1

Reδ

∂ 2ū
∂x2 +

∂ p̄
∂x

)
dy︸ ︷︷ ︸

cD
f

,

(5)
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where .̄ denotes the Reynolds-averaged quantities, δ ∗ is the
displacement thickness and Reδ = U∞δ

ν
. All the dimen-

sions, δ ∗, x and y are normalized by the local boundary
layer thickness δ . The FIK identity decomposes the fric-
tion coefficient into four terms: a contribution from bound-
ary layer thickness cδ

f , a Reynolds shear stress contribution
cT

f , a mean wall-normal convection contribution cC
f and a

spatial development contribution cD
f .

The streamwise average of the FIK identity terms in
the control region (Reθ = 470 : 700) and downstream of it
(Reθ = 700 : 1400) for the canonical case, Case 13 and Case
5 from BO1 are reported in figure 4. First, we can see that
the friction coefficients calculated by the streamwise shear
stress, c f (in red), match the ones calculated by the FIK
identity, cFIK

f (in back dashed lines). To obtain drag reduc-
tion in the control region, the increase for cD

f and cT
f needs

to be counteracted by a strong reduction for cC
f . The signif-

icant growth of the magnitude of cC
f can be associated with

the increase of the vertical velocity in the blowing section.
An intriguing observation is related to the increase of cC

f
and the reduction of cD

f downstream of the blowing region
which may revert their sign, for example Case 5. It is pos-
sible to conclude that over the blowing region the reduction
of the convection contribution cC

f is responsible for the total
drag reduction, while the spatial development contribution
cD

f is responsible for the low drag observed downstream of
the blowing region.

Figure 4: Streamwise average of the FIK identity terms in the
control region and downstream of it for the canonical case, Case 5
and Case 13 from BO1. Black dashed line is the sum of all the FIK
identity terms.

LES study
In this section, we investigate the possibility of using

ILES instead of DNS for future BO studies. As observed in
figure 5, there is a very good agreement between the ILES
data and the DNS data with and without blowing (Cases 5
and 13 from BO1). The friction coefficient obtained, which
is used for our BO studies, is correctly predicted by our
ILES, within 5% of the DNS data. We can therefore con-
clude that ILES can be used for future BO studies in order
to drastically reduced the cost of the optimisation (in our
case by a factor 16).

Figure 5: Comparison between DNS and ILES data for the
streamwise evolution of the skin-friction coefficient for the canon-
ical case and cases 5 and 13 from the first BO study. For com-
pleteness, the canonical TBL data from Schlatter & Örlü (2010)
are plotted with the black square symbols.

Future work
In our quest to improve net-power saving, it would be a

good idea to increase the number of parameters for the BO
algorithm. In order to find the potentially important param-
eters for future BO studies, we decided to investigate with
few ILES the influence of time dependence for CB. This
potential time modulation can be controlled by two param-
eters: fB = 1/Tm which corresponds to the time frequency
of the modulation (Tm = 0.5,1 and 4δ0/U∞), and DC which
correspond to the duty cycle for the modulation. Steady
blowing is applied when DC=100%. It can be hypothe-
sised that net-power saving could potentially be increased
by reducing the time during which the blowing is on while
hopefully sustaining a high enough drag reduction over and
downstream of the control area. 7 ILES are therefore per-
formed for this study. The results are presented in Table 3.
The first important results is that the data for Case 1 and
Case 4 of the ILES study are similar to the one obtained in
the first BO study (Case 13 and Case 5, respectively) based
on DNS data. Different blowing frequencies are tested and
it is found that there is a correlation between the intensity
of the blowing CB and the duty cycle of the modulation DC:
similar drag reduction levels are achieved for Cases 2/3 and
Cases 5-7. The drag reduction level obtained by a 50% time
modulation is the same as the one obtained by reducing the
intensity of the blowing by half. It can also be seen that
in a context of streamwise intermittent blowing, the time
modulation has virtually no effect on the drag reduction. It
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Table 3: Wall-normal blowing parameters, maximum local drag reduction and averaged drag reduction over L and net-power saving of the
ILES study using the two different blowing systems.

Case
TEST3

CB
×100 NB α fB DC(%)

Max
DR GDR S1 S2

1 0.29 1 1 1 100 34.2 -8.1 4.5 -0.1
2 0.29 1 1 2 50 19.1 -4.0 2.2 -0.1
3 0.145 1 1 1 100 18.7 -4.0 3.1 -0.5
4 1 10 0.78 1 100 77.2 -20.6 -10.7 0.4
5 1 10 0.78 0.25 50 48 -10.1 -6.4 0.01
6 1 10 0.78 2 50 48.4 -10.2 -6.3 0.1
7 0.5 10 0.78 1 100 47.4 -10.1 1.86 0.2

seems to suggest that adding a time modulation parameters
to future BO studies might not be relevant to achieve higher
net-power savings.

Conclusion
In this work, DNS of a specially developing turbulent

boundary layer with continuous/discontinuous wall blow-
ing were performed to provide data for a Bayesian Optimi-
sation algorithm, and used to find the optimal parameters to
generate net-power saving by reducing the friction coeffi-
cient of the boundary layer. Two BO studies were carried
out, one with the experimental data of Kornilov & Boiko
(2012) and one with a new low cost wall blowing solution
using mini speakers. The results are very promising and fu-
ture studies will address the relatively low net-power saving
by increasing the streamwise extent of the control region,
by increasing the Reynolds numbers and by increasing the
number of parameters for the BO algorithm. Instead of us-
ing costly DNS, these future studies will be based on ILES,
which will drastically reduce the cost of the optimisation.
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Schlatter, Philipp & Örlü, Ramis 2010 Assessment of direct
numerical simulation data of turbulent boundary layers.
Journal of Fluid Mechanics 659, 116–126.

Snoek, Jasper, Larochelle, Hugo & Adams, Ryan P 2012
Practical bayesian optimization of machine learning al-
gorithms. In Advances in neural information processing
systems, pp. 2951–2959.

Stroh, A, Hasegawa, Y, Schlatter, Philipp & Frohnapfel, B
2016 Global effect of local skin friction drag reduction
in spatially developing turbulent boundary layer. Journal
of Fluid Mechanics 805, 303–321.

Virk, Preetinder S 1975 Drag reduction fundamentals.
AIChE Journal 21 (4), 625–656.

6


