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ABSTRACT

The effects of surface curvature on fully-developed
turbulent concentric annular pipe flow and structures have
been studied using direct numerical simulations (DNS). A
comparative study based on four radius ratios of a concen-
tric pipe (for Ri/Ro = 0.1–0.7) are compared at Reynolds
number ReDh = 8900. Here, Ri and Ro are the radii of
the inner and outer pipes, respectively, and Dh is the hy-
draulic diameter. The sufficiency of the computational do-
main is investigated by comparing the results of premulti-
plied energy spectra and two-point correlation coefficients.
Coherent flow structures near the inner and outer walls are
investigated in both physical and spectral spaces. The in-
teraction between the inner and outer boundary layers is
studied based on analysis of Reynolds shear stresses. The
dynamics of streamwise-elongated counter-rotating Taylor-
Görtler (TG) vortices are also investigated. In the outer
layer of turbulent annular flow, very large-scale motions
(VLSMS) are observed, which appear as a chain of hairpin
structures.

1 INTRODUCTION

Turbulent flow confined within a concentric pipe is an
interesting subject, which has important engineering appli-
cations to, e.g. double pipe heat-exchangers and the air by-
pass over the combustion chamber of a jet engine. Owing
to the difference in the surface curvature of the inner and
outer pipes, the spatial and temporal scales of turbulence
are different near these two walls of a concentric pipe. The
interaction between these two boundary layers results in an
asymmetric mean velocity profile, which makes the flow
physics more complex than that of a round pipe or plane
channel flow.

In his pioneering study, Rayleigh (1917) conducted a
theoretical analysis of the instability of an inviscid fluid over
a concave wall. Later, Görtler (1954) extended the anal-
ysis to viscous fluids and indicated that the flow instability
can lead to counter-rotating vortex pairs aligned in the mean
flow direction, which are now referred to as Taylor-Görtler
(TG) vortices. These vortex pairs were later observed in

the wind tunnel experimental study of Gregory & Walker
(1956). Wilcken (1930) measured velocity profiles by us-
ing a Pitot tube in a water channel to study the effects of
curvature on the turbulent flow field. They showed that
variation in the first-order flow statistics was much larger
than the prediction of the turbulence mixing length model.
So & Mellor (1973) performed a wind-tunnel experiment to
study the boundary layer along a convex surface. They ob-
served a reverse relationship between the surface curvature
and Reynolds stresses along the convex wall. Neves et al.
(1994) used DNS to study the effects of the convex wall on
the development of a turbulent boundary layer. They ob-
served that as the curvature increases, the skin friction in-
creases, associated with a reduction of the log-law region
and turbulent intensities.

Closely related to the studies of flow over a single
concave or convex surface reviewed above, there are sev-
eral investigations into turbulent flow in concentric or ec-
centric annular pipes. Nouri et al. (1993) conducted ex-
tensive experimental studies on turbulent flows in concen-
tric and eccentric annular pipes using laser Doppler ve-
locimetry (LDV) for Newtonian and Non-Newtonian flu-
ids at ReDh = 8900 (based on Dh and bulk mean veloc-
ity Um). They showed the effect of eccentricity on the
characteristics of the flow field. Chung et al. (2002) per-
formed a DNS study of turbulent concentric annular flow
at ReDh = 8900, identical to the experimental conditions of
Nouri et al. (1993). They examined the effect of transverse
curvature on turbulent statistics by comparing the results of
two radius ratios of Ri/Ro = 0.1 and 0.5. Recently, Ghaemi
et al. (2015) performed particle image velocimetry (PIV)
measurements of a turbulent concentric annular pipe flow at
very high Reynolds numbers (ReDh = 59200–90000). Their
experimental data shows that the maximum mean velocity
and the zero shear stress do not occur at the same radial
position.

Thus far, a detailed study of the effects of transverse
curvature on the turbulent flow in a concentric annular pipe
is still lacking in the current literature. In view of this, we
aim at conducting a systematic DNS study based on various
radius ratios (Ri/Ro = 0.1–0.7). The effects of transverse
curvature and the interaction of the inner and outer bound-
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Figure 1: Computational domain and coordinates.

ary layers are scrutinized through a comparative study. Co-
herent flow structures are identified in both physical and
spectral spaces, and their scales near the inner and outer
walls are investigated.

The remainder of this paper is organized as follows: in
section 2, the numerical algorithm for solving the governing
equations are introduced, and four test cases (of different ra-
dius ratios) are described, in section 3.1 the sufficiency of
the computational domain is investigated. In section 3.2, the
flow physics and statistical moments of the turbulence field
are analyzed, including the mean velocities and Reynolds
stresses. In section 3.3, the coherent flow structures are ex-
amined in both physical and spectral spaces. Finally, in sec-
tion 4, major findings of this research are summarized.

2 ALGORITHM AND TEST CASES

The equations that govern an incompressible flow with
respect to a cylindrical coordinate system read

∇ ·~u = 0, (1)
∂~u
∂ t

+~u ·∇~u =− 1
ρ

∇p+ν∇
2~u− Π

ρ
êz, (2)

where p, ρ and ν denote pressure, density and kinematic
viscosity, respectively. Π is the constant mean axial pres-
sure gradient that drives the flow, and êz is the base unit
vector of the z-direction, with |êz| ≡ 1.

An in-house computer code based on the pseudo-
spectral method has been used for performing DNS, which
was developed using the FORTRAN 90/95 programming
language. Message passing interface (MPI) libraries are
employed to parallelize the computing processes. For do-
main discretization, equally-spaced grid points are used
in both the streamwise and azimuthal directions, and
Chebyshev-Gause-Lobatto points are used in the radial di-
rection for a better spatial resolution near the walls. To ex-
pand the velocity and pressure fields, Fourier series are ap-
plied to the streamwise and azimuthal directions, and the
Lagrange polynomials are used in the wall-normal direc-
tion. Aliasing errors are removed by using the 3/2 rule.
The time splitting method developed by Karniadakis et al.
(1991) with a third-order temporal accuracy is used for
the time integration. Periodic boundary conditions are ap-
plied in the streamwise and azimuthal directions, and no-
slip boundary conditions are imposed on all solid surfaces.
All computations were performed on the WestGrid (West-
ern Canada Research Grid) supercomputers. Figure 1 shows
a schematic diagram of the computational domain and coor-
dinate system of the turbulent concentric annular pipe flow

Table 1: Summary of test cases.

Ri/Ro Nz×Nθ ×Nr Lz×Lθ ×Lr

0.1 392×256×64 12πδ ×2π ×2δ

0.3 392×240×64 12πδ ×3π/2 ×2δ

0.5 392×196×64 12πδ ×3π /4×2δ

0.7 392×144×64 12πδ ×π /2×2δ

under testing. Here, z, r, and θ denote the axial (stream-
wise), radial and azimuthal coordinates, respectively, and
uz, uθ and ur represent velocity components in the corre-
sponding directions. The radius of the cylindrical chan-
nel center is R = (Ri + Ro)/2. A summary of test cases
and grid resolutions is given in Table 1. Four radius ratios
(for Ri/Ro = 0.1,0.3,0.5 and 0.7) are compared at a fixed
Reynolds number of ReDh = 8900. In order to maintain
the accuracy required by DNS, the grid resolution is kept at
∆+

z ≤ 14.3 and ∆
+
θ
≤ 7.71 in the streamwise and azimuthal

directions, respectively. The radial resolution is kept at
∆+

r ≤ 0.15 near the walls and ∆+
r ≤ 12.96 in the central do-

main. Here, superscript “+” denotes a quantity expressed in
the wall coordinate (through non-dimensionalization based
on ν and uτ ).

3 RESULT ANALYSIS

3.1 Minimal pipe lenght
The choice of computational domain size is crucial for

obtaining an accurate solution of the turbulent flow field.
The accuracy of the predicted flow field depends on the nu-
merical algorithm, boundary conditions and computational
domain size. A highly accurate algorithm by itself is not
sufficient to warrant a correct prediction of the principal
flow physics associated with the most energetic eddy mo-
tions. If the computational domain is overly small, energetic
eddies will not be captured by DNS, which necessarily leads
to an artificial distortion or chopping off of the energy spec-
tra at low wavenumbers. The sufficiency of a computational
domain sized can be investigated in both physical and spec-
tral spaces based on the criteria of two-point correlation and
premultiplied energy spectra.

Figure 2 compares the two-point correlation coeffi-
cients of the different cases in the streamwise direction.
The two-point correlations are calculated at r+ = 15, where
the maximum of turbulence intensity occurs. Figure 2
shows that Rzz marginally goes to zero for z/δ ≥ 6 in all
cases, which indicates sufficiency of the streamwise compu-
tational domain size. It is worth mentioning that the choice
of domain size based on two-point correlation in the physi-
cal space may not be conclusive, and it is necessary to study
the energy spectra of the flow field in the spectral space
to ensure that those energetic eddies of low wavenumbers
are fully captured. The premultiplied energy spectra in the
streamwise direction is defined as:

φii(λz,r) = kz〈ûi(λz,r)û∗i (λz,r)〉, (3)

where kz and λz are the wavenumber and wavelength of the
streamwise direction, respectively, and 〈·〉 denotes spatial
and temporal averaging. Fourier transform of the veloc-
ity vectors is denoted by ûi, and û∗i denotes its conjugate.
Figure 3 shows the premultiplied energy spectra as a func-
tion of the non-dimensionalized wavelength in the global
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Figure 2: Two-point correlation coefficient at r+ = 15.
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Figure 3: One-dimensional energy spectra at r+ = 15.

coordinate (λz/δ = 2π/kzδ , where δ is one half the pipe
gap). Clearly, the streamwise computational domain size
Lz = 12πδ used in the current DNS is large enough to cap-
ture most of the turbulence kinetic energy (TKE) such that
the TKE at the lowest wavenumber (k1) near the outer wall
is only 25% of the peak value in the case of Ri/Ro = 0.1.

3.2 Flow statistics
The mean flow parameters are given in Table 2. In the

table, Reτ = δtuτ/ν , which is defined based on the wall
friction velocity uτ and boundary layer thickness δt . The
boundary layer thickness, δt , is the distance across a bound-
ary layer from the wall to the point where the streamwise
mean velocity is maximum (or alternatively, the Reynolds
shear stress is zero). From Table 2, it is evident that the
skin friction coefficient (C f = τw/

1
2 ρU2

m) increases with an
increasing curvature (or, with a decreasing value of radius
ratio Ri/Ro). Here, Um is the bulk mean velocity and τw is
the averaged wall shear stress over the inner or outer walls.

The law of the wall can be derived by postulating a
length scale ` = κθ r. Here, κθ is the Kármán constant,
which shows the ratio of the outer length scale to the vis-
cous length scale (Adrian, 2007). The law of the wall in the
log-law region can be stated as:

〈uz〉+ = 〈uz〉/uτ =
1

κθ

ln(r+)+βθ . (4)

Direct numerical simulation enables us to accurately mea-
sure these two quantities κθ and βθ . The Kármán constant

Table 2: Mean flow parameters.

Ri/Ro 0.1 0.3 0.5 0.7

ReDh 8900 8900 8900 8900

Reτi 196 177 164 159

Reτo 105 117 125 131

C fi 0.0132 0.0102 0.0093 0.0092

C fo 0.0085 0.0086 0.0088 0.0090

is obtained from the following equation:

1
κθ

= r+
∂ 〈uz〉+

∂ r+
. (5)

Substituting Eq. (5) into Eq. (4) βθ to obtain:

βθ = 〈uz〉+− r+
∂ 〈uz〉+

∂ r+
ln(r+). (6)

Figures 4a and 4b show the values of the two constants κθ

and βθ of the logarithmic law of the wall for all cases.
Clearly, as the radius ratio decreases, the plateau region
reduces, especially near the inner wall. Figure 4b shows
the value of the additive constant βθ on the inner and outer
wall sides for all test cases. Figure 5a contrasts the stream-
wise mean velocity profiles of the inner and outer walls
for the case of Ri/Ro = 0.1. The various regions and lay-
ers for describing the near-wall flow are distinguished for
the outer wall. The velocity profiles of both the inner and
outer walls strictly follow the linear law of the wall for the
viscous sublayer. The log-law region is developed over a
wider extended range for the outer wall than for the in-
ner wall, which is consistent with a greater plateau region
of the outer wall shown in figure 4a. Figure 5b compares
the mean velocity profiles of all cases with respect to the
global coordinate. The boundary layer evolving over the
outer wall is thicker than that over the inner wall. Conse-
quently, the velocity on the inner side is higher than that on
the outer side. The characteristics of the turbulent boundary
layer near the inner wall with higher velocities are similar
to those of an accelerating boundary layer. Furthermore, it
is observed that the wake region on the inner side is dimin-
ished, which is consistent with the experimental observation
of Bourassa & Thomas (2009) based on their oil-film in-
terferometry measurement of a highly accelerated turbulent
boundary layer.

Figure 6 compares the profiles of the Reynolds nor-
mal stresses of four test cases for both the inner and outer
walls. The Reynolds normal stresses are scaled based on
the local friction velocities of the inner and outer walls ac-
cordingly. From figure 6, the transverse curvature effects
can be readily identified by comparing the results of the in-
ner and outer walls of each case. The position of the peak
is consistent near the inner and outer sides in all cases and
occurs at r+ = 15. Here, the wall coordinate is defined as
r+ = (r−Ri)uτi/ν and r+ = (Ro− r)uτo/ν for the inner
and outer walls, respectively. The magnitude of turbulence
intensity associated with the streamwise velocity fluctua-
tions is the highest, followed by azimuthal and radial com-
ponents. The difference between the inner and outer walls
becomes more apparent as the radius ratio decreases. It is
worth noting that the radial and azimuthal components of
turbulence intensity are more sensitive to the transverse cur-
vature than does the axial component.
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Figure 4: Values of constants κθ and βθ of the log-law
of the wall associated with the mean axial flow in a
concentric annular pipe.

The study of the Reynolds shear stress is the key to bet-
ter understand the interaction between the inner and outer
boundary layers. Figure 7 compares the Reynolds shear
stresses of all test cases with respect to the global coor-
dinates. As is evident in the figure, the magnitude of the
Reynolds shear stresses is higher on the outer wall side than
on the inner wall side. Apparently, as shown in the figure,
the difference between the two sides of the concentric an-
nular pipe becomes more pronounced as the radius ratio de-
creases. The boundary layer thickness (δt ) can be measured
by finding the point where Reynolds shear stresses cross the
zero. Through a shear stress balance, it can be shown that
this difference in the Reynolds shear stresses between the
outer and inner walls further results in differences in the
wall friction velocities and boundary-layer thicknesses on
the two sides of the concentric annular pipe.

3.3 Turbulent flow structures
From the above analysis, it is understood that a de-

crease of the radius ratio results in a bigger discrepancy in
the magnitudes of Reynolds stresses between the inner and
outer walls. It would be interesting to further understand the
effect of the radius ratio on the dynamics of turbulent flow
structures within the inner and outer boundary layers. The
scale of energetic turbulent flow structures is identified us-
ing the streamwise velocity spectrum and visualized using
the iso-surfaces of the swirling strength (λci).
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Figure 5: Profile of the non-dimensionalzed mean ax-
ial velocity displayed with respect to the wall and
global coordinates.

The spectrum map shows the premultiplied energy
spectra as a function of wavelength (λz) and wall-normal
distance (r+), which vividly demonstrates the energy-
containing scales of near-wall turbulence. In order to show
the curvature effects, two cases of the smallest and largest
radius ratios (i.e., Ri/Ro = 0.1 and 0.7) are directly con-
trasted in our study. Figure 8 compares the contours of
the one-dimensional (1D) premultiplied energy spectra of
the streamwise velocity fluctuations of the inner and outer
walls. The spectrum maps show three regions of high-,
intermediate- and low-intensity cores. The borders of these
three regions correspond 0.875max(φzz), 0.625max(φzz)
and 0.375max(φzz). The border that separates the spec-
trum maps of the inner and outer walls is shown with a
dashed black line. The near-wall streaks are the most en-
ergetic structures in the turbulent flow field. From figure 8,
it is clear that the peak value of the premultiplied energy
spectrum corresponding to the most energetic flow struc-
tures occurs at r+ ≈ 15 near the inner and outer walls for
both cases. The streamwise wavelength corresponding to
the energetic flow structures for the case of Ri/Ro = 0.7
is λ+

z ≈ 1000 on both the inner and outer sides. How-
ever, for the case of Ri/Ro = 0.1, those wavelengths are
λ+

z ≈ 1100 and λ+
z ≈ 900 for the inner and outer walls, re-

spectively. This asymmetrical radial distribution of the pre-
multiplied energy spectrum is a consequence of the curva-
ture difference between the inner and outer walls. This also
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Figure 6: Profiles of Reynolds normal stresses at
various radius ratios.

clearly indicates that as the curvature increases, the near-
wall streaks become increasingly elongated near the inner
wall and shortened near the outer wall.

Figure 9 shows the iso-surfaces of the swirling strength
(λci = 1.0) for the case of radius ratio Ri/Ro = 0.5. Only
one-half of the streamwise and a quarter of the cross-
sectional domain is plotted to improve the visual effects.
The presence of large-scale motions in the form of hairpin
packets in the logarithmic region is evident. The TG vor-
tices are visualized in figure 10 using the contours of ω ′z

+

and velocity vectors in the cross-stream plane for the case
Ri/Ro = 0.1. Here, ω ′z =

1
r

∂ ru′
θ

∂ r −
1
r

∂u′r
∂θ

, which is the fluc-
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Figure 7: Profiles of Reynolds shear stresses at
various radius ratios.

(a) kzφzz/u2
τ for the case of Ri/Ro = 0.1

(b) kzφzz/u2
τ for the case of Ri/Ro = 0.7

Figure 8: Contours of premultiplied one-dimensional
streamwise spectral energy density kzφzz(λz,r+)
for cases of Ri/Ro = 0.1 and Ri/Ro = 0.7.
Three regions of different energy levels are
distinguished using isopleths, corresponding to
0.875max(φzz),0.625max(φzz) and 0.375max(φzz),
respectively.

tuating streamwise vorticity, and an overbar denotes aver-
aging over time and over the homogeneous streamwise di-
rection. The method of visualization used here follows that
of Yang & Wang (2018) who studied TG-like vortices in
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Figure 9: Contour of iso-surface of swirling strength
of λci = 1.0 on the concave wall side

Figure 10: Contours of fluctuating streamwise vortic-
ity ω ′z

+
superimposed with velocity vectors composed

of u′
θ

and u′r, averaged over time and over the ho-
mogenouse streamwise direction of the domain.

a streamwise rotating channel flow using DNS. Only one-
quarter of the cross-section is shown to ensure a clear view
of the velocity field. Clearly, owing to the curvature differ-
ence between the concave and convex walls, the TG vortices
are mostly concentrated near the outer wall.

4 Conclusion

DNS of turbulent flow in a concentric annular pipe
flow has been performed to investigate the effect of trans-
verse curvature on turbulent flow statistics and structures.
The comparative study includes four test cases of different
radius ratio for Ri/Ro = 0.1,0.3,0.5 and 0.7. It is found
that the logarithmic law of the wall does not hold firmly as
the transverse curvature increases. The turbulence intensi-

ties are larger near the outer wall than near the inner wall.
The study of the Reynolds shear stress with respect to the
global coordinates shows that boundary layer is thicker near
the outer wall than near the inner wall. The difference in
the boundary-layer thickness becomes more apparent as the
curvature ratio decreases. Study of one-dimensional energy
spectra shows the effect of transverse curvature on the char-
acteristic scale of energetic turbulent flow structures. It is
found that the transverse curvature causes the streamwise
scale of turbulent flow structures to increase near the in-
ner wall but reduce near the outer wall. By use of time-
averaged contour of streamwise fluctuating vorticity ω ′z

+

and swirling strength λci, very long streamwise elongated
counter-rotating TG vortex pairs are observed. Owing to the
curvature difference between the concave and convex walls,
the TG vortices are mostly concentrated near the outer wall
of the concentric annular pipe.
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