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ABSTRACT
The restricted nonlinear (RNL) model predicts low-

order statistics of wall-bounded turbulent flows at low to
moderate Reynolds numbers. We demonstrate that the accu-
racy of this prediction depends on its streamwise wavenum-
ber support, which is optimized when the associated modes
coincide with the outer layer peak of the surrogate dissipa-
tion spectra. The structures associated with this peak range
asymptote to a streamwise extent of 150 wall units making
RNL a predictive reduced-order model for wall-bounded
turbulence. We then expand upon the current understand-
ing of the RNL system by comparing the energy transfer
when the dynamics are supported by the low wavenumbers
associated with unparameterized RNL dynamics to those
associated with reproducing the correct log-law behavior.
Our results show that the correct parametrization improves
the predictions of spectra and energy transport. However,
the RNL dynamics seem to compensate for the reduction
in dissipation associated with the dynamic restriction on the
nonlinear interactions by shifting the energy of the spanwise
spectra peaks to smaller scales and increasing turbulent and
viscous transport rates near the wall. These observations
suggest that the self-sustaining process underlying the RNL
dynamics is very robust, which may have implications for
flow control strategies aimed at reducing turbulence.

INTRODUCTION
Numerical and experimental studies have shown ev-

idence that coherent structures elongated in the stream-
wise direction play a crucial role in the dynamics of wall-
bounded turbulent flow (see, e.g. Smits et al. 2011). Near
the wall where majority of the energy is dissipated, streaky
flow structures and streamwise rolls regenerate turbulence
in a self-sustaining process (see, e.g. Hamilton et al., 1995;
Schoppa and Hussain, 2002). Far from the wall, streamwise
coherent structures in the form of long meandering struc-
tures are largely responsible for the transport of energy (see,
e.g. Kim and Adrian 1999; Guala et al. 2006; Hutchins
and Marusic 2007). These observations have inspired the
development and exploration of streamwise coherent mod-
eling approaches, that aim to isolate key flow mechanisms,
or reduce computational cost while retaining key dynamical
features of the flow.

The simplest example of such a model is a two-
dimensional three-velocity-component (2D/3C) description
of the evolution of a streamwise constant velocity field.

The 2D/3C dynamics have been studied in the context of
plane Couette (Bobba et al., 2004; Gayme et al., 2010) and
Hagen-Poiseuille (Bourguignon and McKeon, 2011) flows.
With persistent forcing, the 2D/3C model has been shown
to generate streamwise rolls and successfully capture mo-
mentum transfer at low Reynolds numbers. However, in the
absence of forcing the 2D/3C dynamics are unable to self-
sustain turbulence.

The RNL model overcomes the need for external ex-
citation by jointly evolving the streamwise constant mean
flow dynamics and a dynamically restricted streamwise
varying perturbation field. The resulting coupled dynam-
ics enable self-sustaining turbulence (see, e.g. Farrell et al.,
2017). The RNL model falls under a class of quasi-linear
(QL) models, which have been widely used in the atmo-
spheric sciences (see, e.g. Farrell and Ioannou 2009; Srini-
vasan and Young 2012). QL models partition the flow into
a large scale (mean flow) and small scale perturbation field
and eliminates the nonlinear interactions between the small
scales. The large scale is typically a horizontal average (i.e.
the zero streamwise and spanwise Fourier components).

The QL paradigm has recently been generalized by em-
ploying a spectral filter that includes a range of both stream-
wise and spanwise length scales in the large scale equa-
tion. This generalized quasi-linear (GQL) model has been
applied to the study of zonal jets (Marston et al., 2016),
the helical magnetorotational instability (Child et al., 2016),
and rotating Couette flow (Tobias and Marston, 2017). The
RNL model can be obtained as a GQL with wavenumber
cut-offs of zero in the streamwise direction and infinity in
the spanwise direction.

The resulting restriction of the perturbation field elim-
inates nonlinear interactions between (streamwise varying)
perturbations resulting in a natural order reduction of the
streamwise dynamics, where the energy of the large stream-
wise wavenumbers decay exponentially (Thomas et al.,
2015). At Reτ ≈ 65, this unparametrized RNL was shown
to accurately predict the mean velocity and reproduce span-
wise structures qualitatively similar to those in direct nu-
merical simulation (DNS) data, however the RNL simula-
tions over-predicted the streamwise normal Reynolds stress
(Thomas et al., 2014). At higher Reynolds numbers, up to
Reτ ≈ 950, RNL simulations have also been found to in-
correctly predict the proper log-law behavior (Farrell et al.
2014).

Bretheim et al. (2015) demonstrated how to im-
prove the accuracy of the RNL system in a half-channel
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configuration by imposing a different set of streamwise
varying wavenumbers. In particular, limiting the stream-
wise wavenumber support to larger wavenumbers (smaller
scales) the accuracy of first- and second-order statistics
were shown to improve across a range of Reynolds num-
bers, Reτ ≈ 110, 180, 260, 340. An analysis across
wavenumbers showed that when restricted to a single
nonzero streamwise mode, the most accurate statistics pre-
dicted by RNL were obtained for wavelengths that asymp-
totically decreased to λ+

x ≈ 150 with increasing Reτ .
This asymptotic limit of λ+

x ≈ 150 also corresponds
to the peak of the surrogate dissipation spectra in the outer
layer, as plotted by Jiménez (2012) from DNS data at
Reτ ≈ 2000. Bretheim et al. (2018) tested this notion in the
large eddy simulation (LES) context by developing a RNL-
LES model and limiting the streamwise wavenumber sup-
port to the range in which the surrogate dissipation peaked
in LES. That work showed that a RNL-LES model with
such a wavenumber support can correctly predict turbulent
statistics at effectively infinite Reynolds numbers.

The current work further explores this dissipation spec-
tra based parametrization of the RNL dynamics by vary-
ing the streamwise wavenumber support in a half-channel
configuration. First, we compare the streamwise wavenum-
bers where the surrogate dissipation peaks in DNS to the
streamwise wavenumbers identified as being optimal with
respect to reproducing log-law behavior in Bretheim et al.
(2015), across the Reynolds numbers they considered. We
then focus on Reτ ≈ 180 and compare the spectra and en-
ergy transport in RNL turbulence supported by large scale
streamwise varying structures (the natural support or un-
parametrized dynamics) to that supported by the “optimal”
structures. Our results indicate that the spanwise scales play
a role in compensating for simplification of the streamwise
varying flow dynamics. The energy transport terms also
shift to balance the turbulent kinetic energy budget. We
conclude the paper by discussing the implication of these
trends and associated directions for future work.

NUMERICAL APPROACH
We consider a half-channel flow configuration, with

no-slip and stress-free boundary conditions taken at the bot-
tom (y= 0) and top (y= δ ) boundaries respectively, and pe-
riodic boundary conditions in the streamwise and spanwise
directions. A domain size of [Lx,Ly,Lz]/δ = [4π,1,2π] is
used for all simulations.

The RNL dynamics are described by the evolution of
a total velocity field uT (x,y,z, t) consisting of streamwise
(x), wall-normal (y), and spanwise (z) velocity components,
respectively denoted (uT ,vT ,wT ). Taking angle brackets to
denote streamwise averaging (represented in Fourier space
as kx = 0), the total velocity is decomposed into a stream-
wise mean component, U(y,z, t) = 〈uT 〉, and perturbations
about that mean u(x,y,z, t) = uT −U. The RNL dynamics
are governed by continuity of the total velocity, ∇ ·uT = 0,
and the momentum equations,

∂tU+U ·∇U+∇P/ρ−ν∇
2U =−〈u ·∇u〉 (1a)

∂tu+U ·∇u+u ·∇U+∇p/ρ−ν∇
2u = 0 . (1b)

Had the Navier-Stokes equations been decomposed in
this manner, the resulting equations would include the non-
linear term, 〈u ·∇u〉−u ·∇u, on the right hand side of equa-

tion (1b). Omitting this term restricts the nonlinear inter-
actions of the perturbations to interactions with the mean
flow and those that result in streamwise constant flow i.e.
those represented in in Fourier space as kx,m + kx,n = 0.
Here the dimensional streamwise wavenumber is defined as
kx,n = 2πn/Lx. The corresponding streamwise wavelength
is defined as λx = 2π/kx.

We simulate equation (1) using the open source
pseudo-spectral code LESGO (https://lesgo.me.jhu.edu).
This code employs a second-order central finite difference
scheme in the wall-normal direction and spectral discretiza-
tion in the homogeneous directions, where the 3/2 rule is
used for dealiasing. To advance the simulations in time, the
second-order Adams-Bashforth method is used.

We run DNS at Reτ ≈ 110, 180, 260, 340, where
the friction Reynolds number is defined as Reτ = uτ δ/ν ,
with friction velocity uτ . RNL simulations are performed
at Reτ ≈ 180 and compared to DNS. DNS and RNL sim-
ulations are run with the same wall-normal and spanwise
grid resolutions. The wall-normal grid is stretched using
a hyperbolic tangent function, five grid points exist below
y+ = 5 and consecutive grid points are stretched with the ra-
tio satisfying ∆yn+1/∆yn < 1.03. The spanwise grid spacing
is ∆z+ ≈ 8. The superscript + indicates scaling by viscous
length scale δν = ν/uτ .

The streamwise grid resolution of the DNS is ∆x+ ≈ 8
and the nonlinear term is computed in the physical space,
requiring transformations back and forth to compute deriva-
tives in Fourier space. When simulating the RNL system,
we take advantage of the simplified streamwise dynam-
ics and compute the nonlinearity in (kx, y, z, t) space, see
Bretheim et al. (2018) for more details.

Eliminating the need for these transforms in the
streamwise direction saves computational time and re-
sources. With the same number of processors on the same
hardware, the RNL simulations performed in this work
showed a wall-time speedup of 19.1× compared to DNS.
In the following section results from DNS and RNL simu-
lations are presented.

RESULTS
We begin by showing that the streamwise wavelengths

associated with reproducing log-law behavior in RNL,
found empirically by Bretheim et al. (2015), coincide with
the peak of the surrogate dissipation spectra in the outer
layer at low to moderate Reynolds numbers. Bretheim et al.
(2015) computed these streamwise wavelengths by running
a series of RNL simulations where they varied the single
nonzero streamwise wavenumber (kx 6= 0 Fourier compo-
nent) supporting the dynamics. At a fixed Reynolds num-
ber, they then reported the simulation which most accu-
rately predicted the skin-friction coefficient. These asso-
ciated streamwise wavelengths for each Reτ that they simu-
lated are presented in the top left panel of figure 1.

The remaining panels of figure 1 show the correspond-
ing pre-multiplied streamwise surrogate dissipation spec-
tra predicted by DNS at various Reynolds numbers, with
a dashed line indicating the values from Bretheim et al.
(2015). The surrogate dissipation spectra is computed as the
time-fluctuating vorticity (Jiménez 2012) and differs from
the true dissipation by a cross-term of velocity gradients that
is identically zero in homogeneous isotropic turbulence, and
is relatively small in channel flow.

Figure 1 demonstrates good agreement between the

2



11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11)
Southampton, UK, July 30 to August 2, 2019

Figure 1: The optimal streamwise wavelengths found empirically in Bretheim et al. (2015) (top left) is shown to
coincide with the peak of the pre-multiplied streamwise surrogate dissipation spectra (νkx(Eωxωx +Eωyωy +Eωzωz))
at Reτ : 110 (top right), 180 (bottom left), and 340 (bottom right). The spectra is locally normalized by its maximum
value at each y+, with color scale from 0 (blue) to 1 (red). The vertical black dashed lines in the spectra correspond
to the streamwise wavelength at that Reτ given in Bretheim et al. (2015) shown in the top left panel.

streamwise wavelengths predicted by Bretheim et al. (2015)
and the streamwise wavelengths where the surrogate dissi-
pation peaks in the outer layer. It should be mentioned that
near the wall, the surrogate dissipation peaks at streamwise
wavelengths larger than those in the outer layer. Therefore
the streamwise scales that reproduce the correct momentum
transfer in the RNL system are associated with the peak sur-
rogate dissipation in the outer layer, even though it is near
the wall where majority of the energy is dissipated.

We now focus on RNL turbulence at Reτ ≈ 180 and
further examine energy transport in the RNL dynamics.
More specifically, we characterize how the spectra and en-
ergy transport are affected when we move the streamwise
wavenumber support from the low wavenumbers associated
with the unparameterized RNL dynamics to the more dissi-
pative streamwise scales.

Two RNL simulations at Reτ ≈ 180 are performed.
The first with a streamwise wavenumber support consist-
ing of the modes that comprise the unparameterized RNL
dynamics, labelled R-1. The second RNL simulation, la-
belled R-2, includes the modes associated with the peak of
the surrogate dissipation structure (i.e. known to lead to
a mean flow with the correct log-law). Both wavenumber
supports include the streamwise mean component (kx = 0)
as well as three consecutive non-zero streamwise wavenum-
bers, kxδ = 0.5, 1.0, 1.5 in simulation R-1 and kxδ =
6.0, 6.5, 7.0 in simulation R-2.

First- and second-order statistics obtained through sim-
ulations of cases R-1 and R-2 are compared in figure 2,
where time-averaged quantities are denoted by a over-bar
and fluctuations with respect to this average are denoted by

a prime. The mean velocity of the R-1 case agrees well with
the law of the wall in the viscous sub-layer, however as in
previous studies (Bretheim et al., 2015; Farrell et al., 2016;)
it predicts a higher velocity than the log-law. As expected
the Reynolds shear stress follows a similar trend reaching
a higher minimum value than that of the DNS further from
the wall. Also, as seen in previous studies, the peak in the
streamwise and wall-normal Reynolds stresses occur fur-
ther from the wall when compared to the DNS data. The
R-1 simulation also over predicts the streamwise and un-
der predicts the cross stream Reynolds stresses (only the
wall-normal component is shown) throughout the channel
domain.

Figure 2 shows that the accuracy of the first- and
second-order statistics of the R-2 case improve compared
to the R-1 case. All second-order statistics from the R-2
case peak at the same distance from the wall as the DNS.
The magnitudes of the Reynolds stresses are also closer to
those of the DNS compared to the R-1 case, however the
streamwise component is still higher and the wall-normal
component is still lower. These results demonstrate sup-
porting RNL turbulence with wavenumbers corresponding
to the peak of the surrogate dissipation spectra improves the
accuracy of the model.

We next examine how the change in streamwise
wavenumber support affects the spanwise energy spectra of
RNL turbulence. The streamwise and wall-normal compo-
nent of the pre-multiplied spanwise energy spectra is plotted
in figure 3. This figure shows that restricting the stream-
wise dynamics to larger streamwise scales, as in R-1, re-
sults in the spectra peaking at larger spanwise scales com-
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Figure 2: RNL with large streamwise wavenumbers (R-1, blue triangles) shown to incorrectly predict mean velocity
(top left) and Reynolds stress (top right, bottom left, bottom right) profiles. The accuracy of these statistics is
improved for RNL dynamics with a streamwise wavenumber support associated with the outer layer surrogate
dissipation peak (R-2, red circles). Reynolds stress profiles from DNS shown as thick black lines, uT/uτ = y+

(thin dashed black) and uT/uτ = (1/0.41) log(y+) + 5.0 (thin solid black) shown with mean velocity profiles.
Markers are subsampled for clairty and do not represent grid resolution.

Figure 3: Pre-multiplied spanwise energy spectra, kzEuu (top left), kzEvv (top right), production rate spectra kzP̃
(bottom left), and surrogate dissipation spectra νkz(Eωxωx +Eωyωy +Eωzωz) (bottom right) for case R-1 (blue tri-
angles) peak at large spanwise scales. The spectra for case R-2 (red circles) is closer to DNS (black), yet peak at
even smaller spanwise scales to compensate for the simplified streamwise dynamics. Solid lines are 0.80 times the
maximum from DNS, dashed lines are 0.50 times the maximum.
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Figure 4: Terms of the turbulent kinetic energy budget for R-1 (blue triangles), R-2 (red circles), and DNS (black).
The top figures include production rate (left), pseudo-dissipation rate (middle) and summation of transport terms
(right). The bottom figures provide the individual transport terms: turbulent transport (left), pressure transport
(middle), and viscous transport (right).

pared to DNS. The restriction of the dynamics to the largest
streamwise structures also leads to the streamwise com-
ponent of the pre-multiplied spanwise spectra spanning a
broader range of scales, and the wall-normal component be-
coming more concentrated.

Supporting the RNL dynamics with the smaller scale
structures, which leads to more accurate flow statistics (as in
case R-2), results in a shift of the peaks of the energy spec-
tra to smaller spanwise scales. The overall shape and peak
location of the spectra becomes more accurate (i.e. closer
to DNS) however the peak occurs at lower spanwise scales.
This shift can be interpreted as a compensation for the sim-
plified streamwise dynamics comprised of less small scale
activity in the streamwise direction. The additional dissipa-
tion by the spanwise structures enable the properly param-
eterized RNL dynamics (case R-2) to develop the correct
log-law behavior.

The production and surrogate dissipation of the span-
wise energy spectra is provided in figure 3. The production
rate spectra, computed as a product of the pre-multiplied
velocity cospectra, kzEuv, and the mean velocity gradient,
shows a similar trend for the R-1 and R-2 cases to that ob-
served in the energy spectra. The surrogate dissipation rate
of the spanwise energy spectra, which peaks at the wall, ex-
tends further from the wall for the R-1 case than the DNS
and R-2 case. These quantities also show the shifting of the
peak values towards smaller spanwise scales supporting the
notion that the system is compensating for the simplified
streamwise dynamics by altering the spanwise structures.

We further examine energy transport in the RNL dy-
namics by plotting the production, transport, and pseudo-
dissipation rates of the turbulent kinetic energy in figure 4.
The y+ axis of these figures is focused in the near wall re-
gion since significant changes of the terms in the budget
are not observed in the outer layer. The production rate and
summation of all transport terms for the R-1 case reach min-
imum and maximum values further from the wall compared
to DNS. This agrees with trends observed in figures 2 and 3.

At y+ ≈ 17, the production and pseudo-dissipation rates for
case R-1 have smaller magnitudes compared to those seen
in the DNS. The turbulent kinetic energy budget is then bal-
anced by an increase in the magnitude of the the total trans-
port in that location. The bottom panels of figure 4 plots
each of the transport terms individually. These figures indi-
cate that this increase in magnitude is due to turbulent and
viscous transport, rather than pressure transport.

Again selecting the RNL support based on the peak of
the surrogate dissipation spectra (case R-2) results in the
production rate and transport terms having peak magnitudes
in similar locations to those of the DNS, which supports
the observations of figures 2 and 3. In the viscous sublayer
and buffer layer, the production rate predicted by the R-2
case agrees well with DNS, however the pseudo-dissipation
is higher in the viscous sublayer and lower in the buffer
layer. The transport terms then balance this discrepancy
with higher magnitudes in those regions. Similar to the R-
1 case, higher turbulent and viscous transport are observed
in the R-2 case, however the R-2 case also reaches higher
pressure transport values compared to the R-1 case.

CONCLUSIONS
The RNL wavenumber support identified as repro-

ducing the correct momentum transfer in Bretheim et al.
(2015) has been related to the peak of the surrogate dis-
sipation spectra across low to moderate Reynolds num-
bers. At higher Reynolds numbers this value asymptotes to
λ+

x ≈ 150, implying that RNL could be used as a predictive
reduced-order model.

The streamwise wavenumber support leading to im-
proved accuracy of the RNL statistical features introduces
smaller streamwise scales, which leads to more accurate en-
ergy transfer. However, the peak in the energy spectra corre-
sponds to smaller spanwise scales suggesting that the RNL
dynamics use the spanwise components to compensate for
the reduction in nonlinear interactions at small streamwise
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scales. Near the wall the properly parameterized RNL is
shown to accurately predict the production rate, however
pseudo-dissipation is higher in the viscous sublayer and
lower in the buffer layer compared to DNS. The turbulent
kinetic energy budget is then balanced by corresponding
shifts in the turbulent and viscous transport rates.

These trends suggest that the statistical features of tur-
bulence are very robust, i.e. the flow adjusts the energy
transport to maintain the turbulent state. A deeper under-
standing of this behavior is an interesting direction for fu-
ture work, particularly in relation to flow control that aims
to alter the turbulent dynamics.
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