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ABSTRACT
We discuss one-way coupled results of an elastic plate

excited by wall-pressure fluctuations generated by Direct
Numerical Simulation (DNS) of turbulent channel flow at
Reτ of 180 and 400, where Reτ := uτ δ

ν
, uτ is the friction ve-

locity, δ is the half channel height and ν is the kinematic
viscosity of the fluid. We present a novel framework to
compute the magnitude and phase of the wall-normal dis-
tribution of the dominant flow sources to the modal force
power spectral density (PSD) of the plate. This developed
framework is also used to obtain the characteristics of the
dominant sources in the channel that contribute to the wall-
pressure fluctuation PSD. The wall-pressure fluctuations
show a collapse in the spanwise similarity functions for both
Reτ at high frequencies. The computed averaged displace-
ment power spectral density of the clamped plate varies
roughly as ω−9 around ωδ/uτ = 100 for both Reτ . The do-
main within the boundary layer that contributes to the modal
force PSD of the plate is maximum near the hydrodynamic
coincidence frequency of the plate at Reτ = 180. The com-
puted dominant source distribution for wall-pressure fluc-
tuations show that the region around y+ ≈ 6 contributes to
the PSD for both low and high frequency whereas the con-
tribution of the outer region diminishes with increasing fre-
quency. At low frequencies for Reτ = 180, there is a pair
of dominant regions around y+ ≈ 40 which are opposite in
phase with each other that contribute to wall-pressure fluc-
tuation.

INTRODUCTION
Structural vibrations due to turbulent boundary layer

(TBL) wall-pressure fluctuations contribute to radiated far-
field sound. For sufficiently small response of the structure,
the coupling between the boundary layer and structural re-
sponse can be assumed to be one-way coupled. For a flat
plate excited by a TBL, the wavenumber frequency spec-
trum of wall-pressure fluctuation determines the structural
response. Several experiments (Willmarth & Wooldridge
(1962), Corcos (1964), Blake (1970), Farabee & Casarella
(1991)) and Direct Numerical Simulations (DNS) (Kim
(1989), Choi & Moin (1990), Hu et al. (2006), Sillero
et al. (2013)) have been carried out to characterize the wall-
pressure fluctuations in an incompressible TBL. Readers are
referred to the comprehensive reviews by Willmarth (1975),
Bull (1996) and Blake (2017) for more details on TBL wall-
pressure fluctuations. The one-way coupled response of

elastic plates subjected to homogenous TBL wall-pressure
fluctuations have been previously studied using Frequency
domain Finite Element Method (FEM) calculations (Ham-
bric et al., 2004). The one-way coupling between the wall-
pressure fluctuations and an elastic plate have been analyzed
previously using modal sensitivity functions (Blake (2017);
Hwang & Maidanik (1990)).

In this paper, we perform time-domain FEM simula-
tions to obtain the one-way coupled plate response due to
excitation from TBL wall-pressure flucutations at Reτ =
180 and 400. The wall-pressure flucutations are generated
from DNS of turbulent channel flow. The bottom wall of the
channel is assumed to be flexible. We present a novel frame-
work to analyze the coupling between different portions in
TBL and the plate utilizing the 3D DNS data, pressure fluc-
tuation Poisson equation source terms, and Spectral Proper
Orthogonal Decomposition (SPOD) (Towne et al., 2018).
The analysis yields the magnitude and phase of the wall-
normal distribution of the dominant sources (through SPOD
modes) within the channel to the modal force spectral den-
sity of the plate and also to the wall-pressure fluctuation
PSD. These SPOD modes help to understand the coupling
between coherent structures in TBL and the structural re-
sponse.

The paper is organized as follows. First, we discuss
the fluid and solid simulation methodologies. Then, we
present the novel one-way coupled analysis framework. The
obtained wall-pressure fluctuations, plate response and the
one-way coupling between them is then analyzed.

METHODOLOGY
Simulation details

DNS of turbulent channel flow is performed by solv-
ing the incompressible Navier-Stokes equations using the
finite volume method of Mahesh et al. (2004) in a convect-
ing frame of reference moving with the bulk velocity of
the fluid in the channel. The semi-discrete (space only dis-
cretization) form of the method is discretely kinetic energy
conserving. The moving reference frame was seen to yield
better prediction of the high wavenumber region of the ve-
locity fluctuation spectra (Bernardini et al., 2014). Time in-
tegration is performed using the Crank-Nicholson scheme.
The governing equations are non-dimensionalized based on
friction velocity (uτ ) and half channel height (δ ). The com-
putational domain is chosen to be a box 6πδ × 2δ × 2πδ

for both Reτ = 180 and 400, where 6πδ ,2πδ and 2δ are
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Table 1: Grid size for the fluid DNS and solid simulations.
Superscript f denotes fluid and s denotes solid. Here, we
choose x, y and z to be streamwise, wall-normal and span-
wise direction respectively.

Reτ N f
x ×N f

y ×N f
z Ns

x×Ns
y×Ns

z

180 720×176×330 144×1×66

400 1388×288×660 347×1×165

the lengths in the streamwise, spanwise and wall-normal
directions. The computational mesh (table 1) is uniform
in streamwise and spanwise direction and we use a hyper-
bolic tangent spacing in the wall-normal direction with a
stretching factor of 2.07 for both Reτ . The mesh spacing is
fine enough to resolve the structures in the channel. A time
step of 5× 10−4ν/u2

τ is used for both Reτ . The mean and
root mean square (RMS) statistics of velocities are validated
with the DNS results of Moser et al. (1999) (not shown).
The DNS simulation is run for a total time of 10 units after
the initial transients settle down. The pressure fluctuation
on the bottom wall is stored for every time step and is used
to excite the linear elastic plate. The source term of the pres-
sure fluctuation Poisson equation is also stored every time
step for the one-way coupling analysis described in the sub-
sequent sections.

The dynamic linear elasticity equations are solved us-
ing continuous Galerkin Finite Element Method in space
and Newmark time integration scheme (Hughes, 2012).
We use hexahedral elements with polynomials of degree
2 to represent the approximate solution within each ele-
ment. The description and validation of the solver for static,
dynamic and eigenvalue problems is discussed in Anan-
tharamu & Mahesh (2018). The plate at the bottom wall
is clamped on all sides. The pressure fluctuations from the
fluid solver are imposed onto the plate as wall-normal trac-
tion. The fluid and solid grids are chosen such that the fluid
surface mesh is a refinement of the solid surface mesh at
the interface. For such a configuration, we use an optimal
methodology described in Anantharamu & Mahesh (2018)
to transfer the piecewise constant representation of the pres-
sure in the fluid domain onto the solid domain. Also, we use
an in-house implementation of the preconditioner described
in Klöppel et al. (2011) to address the high condition num-
ber arising from the aspect ratio of the elements due to the
thin plate geometry. The solution time of the linear alge-
bra problem is reduced by 30− 40% due to the precondi-
tioner. The solid mesh sizes used for the Reτ = 180 and
400 simulations is mentioned in table 1. We choose a half
channel height of 2.5cm. The plate thickness (h), Young’s
modulus (E), Poisson ratio (νs) and density (ρs) of the
plate is chosen to be 0.1cm, 10MPa, 0.4 and 1200kgm−3

respectively. A mass proportional damping is assumed that
yields a structural loss factor of 0.05 at the first natural fre-
quency. The kinematic viscosity of the fluid is assumed to
be 1.1×10−6m2s−1.

One-way coupling analysis framework
We analyze the one-way coupling between the channel

and the plate as follows. We compute complex wall-normal
modes and their corresponding eigenvalues using SPOD of
wall-normal cross-spectral density of the contribution of
the sources within the channel to the modal force PSD.

The same framework can be used to understand the wall-
normal correlated contribution to the wall-pressure fluctua-
tion PSD.

The modal force PSD φ
m,n
pp (ω) for the (m,n)th mode of

the plate is defined as (Blake, 2017)

φ
m,n
pp (ω) =

∫
Γ

∫
Γ

Φpp(x1,x2,ω)ψm,n(x1)ψm,n(x2)dx1dx2,

(1)
where Γ is the plate surface, m and n are the mode in-
dices in streamwise and spanwise directions respectively,
Φpp(x1,x2,ω) is the cross-spectral density of the wall-
pressure fluctuations, ψm,n(x) is the (m,n)th mode shape
of the plate. Assuming homogeneity in the streamwise and
spanwise directions, we use Fourier transforms to rewrite
φ

m,n
pp (ω) as an integral over the spanwise and streamwise

wavenumbers as

φ
m,n
pp (ω) =

∫
∞

−∞

∫
∞

−∞

Φpp(k1,k3,ω)|Sm,n(k1,k3)|2dk1dk3,

Sm,n(k1,k3) :=
∫

Γ

ψm,n(x1,x3)e−i(k1x1+k3x3)dx1dx3

(2)

where Φpp(k1,k3,ω) is the wall-pressure fluctuation
wavenumber frequency spectrum. In equation 2,
|Sm,n(k1,k3)|2 is called the modal sensitivity function
(Blake, 2017). Φpp(k1,k3,ω) can be related to the wall-
normal cross-spectral density of source terms of the pres-
sure fluctuation Poisson equation φ f f (k1,k3, r,s,ω) using
the Green’s function of the Poisson problem for the channel
flow domain. The modal PSD then becomes

φ
m,n
pp (ω) =

∫ +1

−1

∫ +1

−1
Γm,n(r,s,ω)drds,

Γm,n(r,s,ω) :=
∫

∞

−∞

∫
∞

−∞

G(0, r,k1,k3)G(0,s,k1,k3)

φ f f (k1,k3, r,s,ω)|Sm,n(k1,k3)|2dk1dk3,

(3)

where Γm,n(r,s,ω) is the contribution of sources corre-
lated at wall-normal locations r and s in the boundary layer
which is computed from the DNS data, G(0, r,k1,k3) is the
Green’s function with one point fixed at wall. In order to
obtain the distribution of the dominant contribution, we per-
form spectral POD of Γm,n(r,s,ω) as

Γm,n(r,s,ω) =
∞

∑
i=1

λi(ω)ϕi(r,ω)ϕ∗i (s,ω), (4)

where (λi(ω),ϕi(r,ω)) are the spectral POD eigenvalue and
eigenvector pairs. The modal PSD can then be written as

φ
m,n
pp (ω) =

∞

∑
i=1

γi(ω),

γi(ω) : = λi(ω)|
∫ +1

−1
ϕi(r,ω)dr|2

(5)
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Figure 1: Comparison of wall-pressure fluctuation
power spectral density.

We can also write the modal PSD as

φ
m,n
pp (ω) =

∫ +1

−1
Ψm,n(r,ω)dr,

Ψm,n(r,ω) : = Re
(∫ +1

−1
Γm,n(r,s,ω)ds

)
.

(6)

γi(ω) yields the contribution of each SPOD mode to the
modal PSD. The dominant SPOD mode at a given fre-
quency will have larger value of γi(ω). We can also view the
set of numbers {γi(ω)}∞

i=1 as a modal wall-normal PSD of
the plate. The corresponding SPOD mode yields the magni-
tude and phase of the dominant sources in the wall-normal
direction. The function Ψm,n(r,ω) gives the wall-normal
distribution of the integrated contribution of all sources to
the modal PSD of the plate at a given frequency.

Repeating the above analysis by setting
Sm,n(k1,k3,ω) = 1 yields information on sources that
contribute to the wall-pressure fluctuation PSD. So, we
define S0,0(k1,k3,ω) to be 1 since the mode indices m and
n of the plate begin from 1. The analysis required 13T B
of data for Reτ = 180 and a parallel implementation was
therefore developed. The one-way coupling analysis is
currently being extended to relate the far-field radiated
sound from wall vibration to sources within the channel.

RESULTS AND DISCUSSION
Wall-pressure fluctuation

We first show statistics of wall-pressure fluctuations at
Reτ = 180 and 400. Figures 1 and 2 show the PSD and
streamwise wavenumber spectra respectively. The low fre-
quency region of the power spectral density appear to col-
lapse well for both Reτ whereas the high-frequency region
differs due to the non-dimensionalization using outer units.
The high frequency region is seen to decay with slope −5,
especially for the higher Reτ case. The collapse in the high
frequency region would be better if the PSD is plotted in
viscous units. The streamwise wavenumber spectral density
show the same trend as that of the PSD. The −5 decay in
the high wavenumber region is clearly evident from figure
2.

Most turbulent boundary layer wall-pressure fluctua-
tion models for wavenumber frequency spectrum are given

Figure 2: Comparison of wall-pressure fluctuation
streamwise wavenumber spectra.

in terms of streamwise and spanwise similarity functions
(Blake, 2017) F1(k1Uc/ω) and F3(k3Uc/ω) defined as

F1(k1Uc/ω) :=Φpp(k1,ω)ω/(φpp(ω)Uc(ω)),

F3(k3Uc/ω) :=Φpp(k3,ω)ω/(φpp(ω)Uc(ω)),
(7)

where the convection velocity Uc(ω) is defined as Uc(ω) :=
ω/kmax, kmax is the wavenumber with maximum value of
streamwise wavenumber frequency spectrum for fixed ω .
For Reτ = 180 and 400, Uc(ω)/Uo is around 0.8 and 0.7
(for high frequency range) respectively (not shown). In
figure 3a and 3b, we plot the streamwise and spanwise
similarity function for both Reτ for different frequencies.
The spanwise similarity function collapses for both Reτ at
high frequencies whereas the streamwise similarity function
does not show collapse except in the immediate vicinity of
k1Uc(ω)/ω = 1. Also, the spurious high magnitude of the
streamwise similarity function for low k1Uc/ω attributed to
artifical acoustics as discussed in Choi & Moin (1990) is not
seen in the present calculations. We believe that our large
domain size eliminated any feedback effect from periodic
boundary conditions which was deduced to be the reason
for the spurious high values in Choi & Moin (1990).

Plate response
We compare the response of the FEM clamped plate to

Poisson-Kirchoff plate theory for simply supported BC. The
Poisson- Kirchoff plate theory simulation used the modified
Corcos form (Hwang & Maidanik, 1990) of the wavenum-
ber frequency spectrum with DNS wall-pressure fluctua-
tion PSD. Figure 4 shows the plate averaged displacement
spectra φ a

dd(ω) for Reτ = 180 and 400. The plate aver-
age response increases with Reτ as the pressure fluctua-
tions get stronger with increasing Reτ . We see that in the
frequency range around 100, the plate averaged response
varies roughly as ω−9. Table 2 shows the comparison of
the non-dimensional RMS normal displacement and veloc-
ity for the different cases. The RMS normal displacement
< d2

n >1/2 /δν varies between 0.07-2. Also, the RMS nor-
mal velocity < v2

n >1/2 /uτ of the plate is around 0.003-
0.065. Such small values of the plate response in viscous
units justify the one-way coupled analysis.

Note that here the physical (dimensional) values of
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(a) Streamwise similarity function.

(b) Spanwise similarity function

Figure 3: Streamwise and spanwise similarity func-
tion for Reτ = 180 and 400 for several ωδ

uτ
. Solid

lines denote Reτ = 180 and dashed-dotted lines de-
note Reτ = 400. ωδ

uτ
is color coded as shown in legend

for both cases.

Young’s modulus is kept constant for both Reτ . In non-
dimensional units, E/

(
ρ f u2

τ

)
decreases with Reτ as uτ in-

creases. So, the non-dimensional natural frequencies of the
plate and the associated peaks in the spectra shift to the
lower end of the spectrum as the plate becomes softer in
non-dimensional units with increasing Reτ . For each Reτ ,
the simply supported plate vibrates more than clamped plate
as it is less stiff.

Table 2: Average Root Mean Square (RMS) normal dis-
placement < d2

n >1/2 /δν and velocity < v2
n >1/2 /uτ of

the plate in viscous units.

Case < d2
n >1/2 /δν < v2

n >
1/2 /uτ

Reτ = 180,FEMC 0.0719 0.0028

Reτ = 180,PKSS 0.1136 0.0054

Reτ = 400,FEMC 0.4319 0.0139

Reτ = 400,PKSS 2.1544 0.0645

Figure 4: Comparison of plate averaged displace-
ment power spectral density for Reτ = 180 and 400.
FEMC denotes case using Finite Element Method
with clamped plate BC and PKSS denotes case using
Poisson-Kirchoff plate theory using simply-supported
BC.

Figure 5: Contour plot of wall-normal distribution
of net contribution of sources (Ψ0,0(y,ω)) to wall-
pressure fluctuation PSD for different frequencies at
Reτ = 180. Contour lines are 20 linearly spaced val-
ues between 0.0002 and 0.07.

One-way coupling analysis
We first present the distribution of the sources that con-

tribute to wall-pressure fluctuation PSD based on the frame-
work discussed in the previous section. Then, we present
the analysis for the modal PSD of a simply supported mode
shape with mode indices m = 29 and n = 1.

Figure 5 shows the wall-normal distribution of
Ψ0,0(y,ω) to wall-pressure fluctuation PSD for different
frequencies at Reτ = 180. The dominant contribution in the
frequency range (25 < ωδ/uτ < 200) is seen to be from
the buffer layer (5 < y+ < 30) and the exact location of the
peak contribution moves towards the edge of the buffer and
viscous layer as frequency increases. The outer region of
the boundary layer is seen to make some contribution only
to the low frequency of range of the spectrum. Sources at
y+ = 50 are seen to contribute the most at low frequency
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Figure 6: Normalized SPOD eigenvalues (λi/λmax)
and contribution to wall pressure fluctuation PSD
(γi/γmax) for different frequencies at Reτ = 180. Fre-
quency ωδ

uτ
is color coded as shown in legend.

Figure 7: Magnitude and phase of the dominant SPOD
mode shapes for 3 different frequencies at Reτ = 180
that contribute to wall-pressure fluctuation PSD with
the largest value of γi(ω). Frequency ωδ

uτ
is color

coded as shown in legend.

ωδ/uτ ≈ 44.
The spectral POD eigenvalues λi and the wall-normal

modal PSD γi of each SPOD mode is plotted in figure 6 nor-
malized with the corresponding maximum values. As fre-
quency increases, the number of spectral POD modes with
eigenvalues larger than 10% of the peak value decreases
i.e. fewer number of spectral POD modes are important.
Also, for low frequencies, from the variation of λi/λmax,
we see that the dominant SPOD mode need not contribute
most to the wall-pressure fluctuation PSD. This is because
these dominant SPOD modes are oscillatory in nature (not
shown here) leading to small values of |

∫+1
−1 ϕi(r,ω)dr|2 in

equation 5.
Figure 7 shows the magnitude and phase of the domi-

nant SPOD mode shapes that contribute to the wall-pressure
fluctuation PSD chosen with the maximum value of γi(ω)
for three different frequencies. We see from the variation
of the magnitude of the mode shape that at all the three fre-
quencies there is a peak around y+≈ 6. The source of this

Figure 8: Contour plot of wall-normal distribution
of net contribution of sources (Ψ29,1(y,ω)) to modal
force PSD with m = 29,n = 1 for simply supported
plate for different frequencies at Reτ = 180. Contour
lines are 20 linearly spaced values between 1e-6 and
2e-4.

peak can possibly be attributed to the near wall shear layers
based on its location alone. In the low frequency case, we
see peaks at y+ ≈ 50 and y+ ≈ 60 which are out of phase
by π radians. For the two low frequencies ωδ/uτ ≈ 57 and
120, we see a secondary peak around y+ = 20 whose con-
tribution is in phase with the peak in the near wall region at
y+ ≈ 6.

Next, we consider a simply supported mode with mode
indices m = 29 and n = 1 with mode shape ψ29,1(x1,x3) =
sin(π29x1/L1)sin(πx3/L3). The wall-normal distribution
of net contribution of sources (Ψ29,1(y,ω)) to modal force
PSD for different frequencies at Reτ = 180 is shown in
figure 8. It can seen be from the figure that around
ωδ/uτ ≈ 75, the range of y+ that contributes to the func-
tion Ψ29,1(y,ω) is maximum. This is due to hydrodynamic
coincidence. At this frequency, the streamwise bending
wavenumber of the plate for the considered mode kb =
29π/L1 is same as the convective wavenumber of the wall-
pressure fluctuations kc = ω/Uc. So, the plate is receptive
to forcing at this frequency than at other frequencies. The
modal force PSD also has a maximum at this frequency (not
shown).

Figure 9 shows the magnitude and phase of the domi-
nant SPOD mode shapes that contribute to the modal force
PSD for three different frequencies. The collapse in the
normalized mode shape as seen for the dominant mode
shapes that contribute to wall-pressure fluctuation PSD is
not seen in figure 9. Even though the mode shapes for
the two least frequency cases (ωδ/uτ ≈ 43,50) seem ac-
tive above y+ = 50, this portion does not significantly con-
tribute to modal force PSD due to the linear variation of
phase. The plotted SPOD mode at hydrodynamic coin-
cidence frequency ωδ/uτ ≈ 75 shows that the dominant
sources within the TBL are spread over a maximum range
of wall-normal locations which extend upto the outer layer.
Currently, we are performing one-way coupling analysis at
higher Reτ = 400.

CONCLUSION
We have discussed the response of plates subjected to

wall-pressure fluctuations from DNS of turbulent channel
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Figure 9: Magnitude and phase of the dominant SPOD
mode shapes for 3 different frequencies at Reτ = 180
that contribute to modal force PSD (m = 29,n = 1)
with the largest value of γi(ω). Frequency ωδ

uτ
is color

coded as shown in legend.

flow at Reτ = 180 and 400. We present a framework to ana-
lyze the one-way coupling between the TBL in channel and
the plate. The response of the plate shows an approximate
behavior of ω−9 in the frequency around ωδ/uτ ≈ 100
for both Reτ . The one-way coupling framework quantita-
tively shows that at hydrodynamic coincidence frequency
the portion of the boundary layer that contributes to the
modal force PSD for the chosen well excited mode of the
plate is maximum. Analysis of wall-pressure fluctuation
PSD using the same framework shows that the near-wall re-
gion (y+ ≈ 6) contributes at all the frequencies considered
whereas the contribution of the outer-layer diminishes with
increasing frequency.
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