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ABSTRACT
In this work, we analyze the convective velocities of vor-
ticity fluctuations using an input-output approach. We first
demonstrate that the convective velocities obtained in this
manner reproduce known trends for both velocity and vor-
ticity fluctuations. We then exploit the analytical frame-
work to isolate the contributions of different scale struc-
tures to the local convective velocity of the vorticity fluctu-
ations at different wall-normal locations. Finally, we inves-
tigate the contribution of different physical processes cap-
tured through the different terms in the linearized momen-
tum equation. We use this term by term analysis to under-
stand the mechanisms that lead to the deviation of the con-
vective velocity from the mean velocity in different regions
of the flow. This analysis highlights the role of viscosity,
particularly in relation to the large channel spanning struc-
tures whose influence has been associated with the higher
convective velocity (relative to the local mean) of structures
in the near-wall region.

INTRODUCTION
Convective velocity provides an important tool to corre-
late spatio-temporal relationships in experiments (Dennis &
Nickels, 2008) and in parametrizations of turbulence mod-
els (He et al., 2017). Recent advances in computational
power has enabled detailed convective velocity computa-
tions and analysis using spatially resolved Direct Numerical
Simulation (DNS) data (del Álamo & Jiménez, 2009; Geng
et al., 2015; Renard & Deck, 2015). These studies have
shed new light on this classical problem by highlighting its
dependence on both streamwise and spanwise length scales.
In parallel, additional insights have been gained through
quantifying convective velocity using data from spatially
resolved Particle Image Velocimetry (PIV) measurements
(LeHew et al., 2011) and two point hot-wire measurements
(de Kat & Ganapathisubramani, 2015).

Convective velocity is known to deviate from the local
mean velocity in the near-wall region (Lin, 1953; Krogstad
et al., 1998; del Álamo & Jiménez, 2009; Geng et al., 2015).
This larger convective velocity near the wall has been at-
tributed to fast streamwise elongated structures (del Álamo
& Jiménez, 2009) coherent up to the core region. Kim &
Hussain (1993) refer to these structures as quasi-streamwise
vortices. This explanation supports the notion that scale in-
teractions provide the underlying mechanisms for the be-
havior of the convective velocity at the wall.

We recently employed an input-output based approach

to perform detailed analysis of the scale interactions con-
tributing to the convective velocity at different wall-normal
locations in turbulent channel flow (Liu & Gayme, 2018).
Related analysis based on the stochastically forced Lin-
earized Navier-Stokes (LNS) has been widely employed to
study wall-bounded shear flows; successfully uncovering
flow structures leading to the largest energy amplification
with respect to stochastic disturbances (Farrell & Ioannou,
1993; Bamieh & Dahleh, 2001), isolating the most sensitive
input-output paths (Jovanović & Bamieh, 2005) and charac-
terizing the role of coherent structures (McKeon & Sharma,
2010). The spatio-temporal mean convective velocity has
also been computed using LNS based models with a turbu-
lent base flow (Moarref et al., 2013), and colored stochastic
forcing informed by the flow statistics (Zare et al., 2017).
Our previous work (Liu & Gayme, 2018) expanded on the
scope of the analysis in these prior studies by investigat-
ing the full streamwise-spanwise scale dependent convec-
tive velocity field. The results of that work, which focused
on the convective velocity of streamwise velocity fluctua-
tions, demonstrated good agreement with the DNS based
analysis of Geng et al. (2015). However, we were also able
to exploit the spatial-temporal transfer function to isolate
the role of different scales at each wall-normal location and
perform a term by term analysis of the contribution of each
linear mechanism over the range of scales. In this work, we
build upon these previous results by performing an analo-
gous study of the convective velocity of vorticity fluctua-
tions.

Understanding the transport of vortical structures and
how it is affected through interactions across spatial scales
is of wide interest because vortical structures and vortic-
ity are widely used in both conceptual and predictive mod-
els of wall-bounded turbulent flows. For example, Perry
et al. (1986) proposed Λ-shaped vortices as a candidate
form for the attached eddy model (Marusic & Monty, 2019),
which successfully reproduced statistical flow features such
as the mean velocity and Reynolds stress profiles. Robin-
son (1991) similarly proposed a model based on vortical
structures, including quasi-streamwise vortices and arch-
like vortices, to represent turbulence production through
sweep and ejection in low Reynolds number flows. Hairpin
vortices packets are also the basis of the conceptual descrip-
tion of transport mechanisms of vorticity, momentum, and
turbulent kinetic energy proposed by Adrian (2007).

Streamwise vortices, in particular, have arisen as an
important example of the coherent structures that have been
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shown to play a key role in the dynamics of wall-bounded
turbulence; see e.g., McKeon & Sharma (2010). Stream-
wise vortices were also demonstrated to be optimal pertur-
bations (Butler & Farrell, 1993) and to be associated with
the largest energy amplification (Bamieh & Dahleh, 2001;
Jovanović & Bamieh, 2005) in channel flow. These struc-
tures have also been associated with the high skin-friction
regions that are of engineering interest in wall-bounded tur-
bulent flows (Kim, 2011).

Although there is a large body of work pointing to the
importance of vorticity transport, there has yet to be a de-
tailed analysis of scale dependent convective velocities for
vorticity fluctuations. Here we adapt our input-output ap-
proach to bridge this gap by characterizing convective ve-
locities of vorticity fluctuations in a turbulent channel. The
convective velocities obtained using the proposed model re-
produce trends previously observed in the literature. As
in our previous analysis (Liu & Gayme, 2018), we exploit
the analytical framework to isolate the contribution of each
scale and linear mechanism to the deviation of the local con-
vective velocity from the mean velocity at that wall-normal
location. A term by term analysis indicates that the vis-
cous term has a slightly larger contribution to convective
velocity of streamwise vorticity than the mean shear in the
viscous sublayer. Our results suggest that it is through this
term that the large channel spanning structures influence the
near-wall region.

In the next section, we describe the problem setup and
computational method. We then present the results, fol-
lowed by concluding remarks including a discussion of di-
rections of ongoing work.

PROBLEM SETUP
We consider incompressible channel flow where x,y,z are
the streamwise, wall-normal, and spanwise directions, re-
spectively. We decompose the velocity field, u =

[
u v w

]T,
and the pressure field, p, into mean and fluctuating com-
ponents; i.e., u = ū(y)î + u′ and p = p̄ + p′, where the
overbars indicate time averages, φ̄ = limT→∞

1
T
∫ T

0 φ(t)dt,
and primes indicate fluctuating quantities. We further as-
sume invariance to shifts in (x,z, t), which allows us to use
the (x,z, t) spatio-temporal Fourier transform to decompose
the flow into traveling waves with wavelengths, λx, λz, and
downstream phase speeds, c =−ω/kx. The associated gov-
erning equation for velocity fluctuations can be written as:

ikx(ū− c)û′︸ ︷︷ ︸
I

+v̂′
dū
dy

i+ ∇̂p̂′− 1
Reτ

∆̂û′︸ ︷︷ ︸
II

= f̂′︸︷︷︸
III

, (1a)

∇̂ · û′ = 0. (1b)
Here, transformed variables are indicated with a hat. Veloc-
ity is normalized by the friction velocity; i.e., u+ = u∗/Uτ ,
and spatial variables are normalized by the channel half
height, y = y∗/δ . The friction Reynolds number is defined
as Reτ = δUτ/ν = δ+, where the superscript + denotes
variables measured in inner units. Note that we drop the su-
perscript + on the velocity vectors in (1) and what follows
for ease of exposition.

The term (I) in equation (1a) describes advection of
the fluctuations by the mean, while the terms in (II) include
the effects of shear, pressure, and viscosity. Term (III) rep-
resents the Fourier transform of the nonlinear fluctuation-
fluctuation interactions. Taylor’s frozen turbulence hypoth-
esis states that for sufficiently low turbulence intensities,
turbulent fluctuations can be described as downstream ad-

vection by the mean velocity ū(y), which is equivalent to
setting the terms (II) and (III) in equation (1a) to zero.

We now derive the input/output response that we will
use to compute the convective velocities. Equations (1a)
and (1b) can be rewritten as:

L

[
û′
p̂′

]
= Bf̂′, (2)

where in an abuse of notation we use the same symbol (f′)
to refer to a parametrization of the nonlinear interactions as
an input forcing. In order to investigate the vorticity fluctu-
ations, we define the following output variables:

ψ̂
′ = Cψ̂ ′

[
û′
p̂′

]
, (3)

where ψ̂ ′ = ω̂x
′, ω̂y

′, and ω̂z
′ Here

C
ω̂x
′ =
[
0 −ikz ∂y 0

]
, (4a)

C
ω̂y
′ =
[
ikz 0 −ikx 0

]
, and (4b)

C
ω̂z
′ =
[
−∂y ikx 0 0

]
(4c)

correspond to output operators that enable one to compute
the fluctuating components of the streamwise, wall-normal,
and spanwise vorticity, respectively.

We then define the following input-output (I/O) map
Gψ̂ ′ between the input f̂′ and the output ψ̂ ′ in the manner
of, e.g., McKeon & Sharma (2010); Luhar et al. (2014), to
yield:

ψ̂
′ = Cψ̂ ′L

−1Bf̂′ = Gψ̂ ′(y;kx,kz,c)f̂′, (5)
which provides the fluctuating quantity ψ̂ ′ at each (kx,kz,c)
triplet for a given output map Cψ̂ ′ .

We can then compute the power spectral density using
the input-output map (5) with f′(x,y,z, t) parametrized as
spatio-temporal δ -correlated Gaussian noise with unit vari-
ance using (Jovanović & Bamieh, 2005):

Φψ̂ ′(y;kx,kz,c) = 〈ψ̂ ′ψ̂ ′∗〉= Gψ̂ ′〈f̂′ f̂′∗〉G ∗ψ̂ ′ = Gψ̂ ′G
∗
ψ̂ ′ . (6)

Here the superscript ∗ denotes the complex conjugate, and
〈ψ̂ ′ψ̂ ′∗〉 indicates an ensemble average of ψ̂ ′ψ̂ ′∗.

We then compute the convective velocity of the fluctu-
ating quantity ψ̂ ′ based on a spectral generalization of the
method proposed by Wills (1964) as

ψc(y;kx,kz)≡ arg maxcΦψ̂ ′(y;kx,kz,c). (7)
The expression in (7) provides the convective velocities of
the coherent structure with respective streamwise and span-
wise wavelengths λx = 2π/kx and λz = 2π/kz. This method
therefore allows us to directly compute the convective ve-
locity of the quantity of interest associated with each in-
dividual scale. We next apply this approach to investigate
the convective velocity of vorticity fluctuations in turbulent
channel flow.

RESULTS
The operators in (6) are discretized using the Chebyshev
differentiation matrices generated by the MATLAB routines
of Weideman & Reddy (2000) with 122 collocation points.
We used 201 uniformly spaced points for the phase speed
c+ ∈ [0,30] and 90×90 logarithmically spaced points in the
spectral range kx ∈ [10−2,103] and kz ∈ [10−2,103]. The
turbulent mean velocity at Reτ ≈ 1000 in (1) is obtained
from the DNS of Lee & Moser (2015).

We first validate our approach by comparing the aver-
age convective velocities of velocity fluctuations obtained
from the model with those computed from DNS data (Geng
et al., 2015). The respective output operators associated
with obtaining the streamwise, wall-normal, and spanwise
velocity fluctuations ψ̂ ′ = u′,v′,w′ from equation (3) are
Cû′ =

[
1 0 0 0

]
,Cv̂′ =

[
0 1 0 0

]
and Cŵ′ =

[
0 0 1 0

]
.
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(a) (b)

Figure 1: The average convective velocity in inner units of velocity and vorticity fluctuations, [ψc]h: (a) ψ = u (4 ), ψ = v (�),
and ψ = w (◦) and (b) ψ = ωx (4 ), ψ = ωy (�), and ψ = ωz (◦) with weighting function h = |Fxz(ψ ′)|2k2

x and averaging
domain (λ+

x ,λ+
z )> (500,80) obtained from the model at Reτ ≈ 1000. Results are plotted with convective velocities computed

from DNS data (Geng et al., 2015) at Reτ = 932: (a) ψ = u (N), ψ = v (� ), and ψ = w (•) and (b) ψ = ωx (N), ψ = ωy (� ),
and ψ = ωz (•). The blue dashed lines in both (a) and (b) indicate the mean velocity profile at Reτ ≈ 1000 from Lee & Moser
(2015), which is used in equation (1).

The average convective velocities for each quantity ψ̂ ′

are computed as:

[ψc]h(y) =
∫

Ω
ψc(y;kx,kz)h(y;kx,kz)dkxdkz∫

Ω
h(y;kx,kz)dkxdkz

, (8)

where Ω is the averaging domain and h(y;kx,kz) =
〈|Fxz(ψ

′)|2〉k2
x is a weighting function. This weighting

function is obtained from del Álamo & Jiménez (2009),
who showed that it leads to values equivalent to a least
squares fit to the passive advection model: ∂tψ

′+ψc∂xψ ′=
0.

We specify an averaging domain Ω : (λ+
x ,λ+

z ) >
(500,80) for our model-based results in order to include the
effect of sublayer streaks proposed as the source of the ele-
vated near-wall convective velocity (Kim & Hussain, 1993),
while eliminating the very small scales where nonlinear in-
teractions dominate (and our model is not expected to be
valid). Figure 1 (a) compares the average convective ve-
locities of streamwise, wall-normal, and spanwise velocity
fluctuations with those computed from DNS data by Geng
et al. (2015), whose computations employed a least squares
fit to the passive advection model. The average convective
velocities of vorticity fluctuations are compared with those
computed from DNS (Geng et al., 2015) in Figure 1 (b). We
note that convective velocities of the streamwise and span-
wise vorticity components, which correspond to important
flow dynamics such as the self-sustaining process, (see e.g.,
Waleffe (1997)), match results computed from DNS data
well, while we over predict the wall-normal component.

Previous studies of convective velocities of both veloc-
ity and vorticity fluctuations show that large scale structures
have higher convective velocities than the local mean veloc-
ity in the near-wall region (Kim & Hussain, 1993; Krogstad
et al., 1998; del Álamo & Jiménez, 2009). We now employ
the model to investigate this scale dependence by examining
the convective velocity at different wall-normal locations as
a function of streamwise and spanwise wavelengths. Fig-
ure 2 (a) shows the convective velocities of streamwise vor-
ticity fluctuations normalized by the local mean velocity:
ωxc(y;kx,kz)/ū(y) as a function of the streamwise-spanwise
wavelengths (λ+

x ,λ+
z ) in the viscous sublayer (y+ ≈ 5), the

buffer layer (y+ ≈ 16), and the log-law region (y+ ≈ 96).
The corresponding scale dependent convective velocities

for the wall-normal and spanwise vorticity fluctuations are
shown in figures 2 (b) and (c), respectively. In each case the
vorticity fluctuations are essentially convected at the mean
velocity in the log-law region (right panels), while the great-
est differences are seen in the near-wall region (the left pan-
els), as expected.

del Álamo & Jiménez (2009) defined large scale struc-
tures as those with a length scale (λx,λz)> (2,0.4). To dis-
tinguish large and small scale structures, we have indicated
this wavelength pair using black dashed lines on all plots
in Figure 2. The higher convective velocity of these struc-
tures (λx,λz)> (2,0.4) is seen in both the viscous sublayer
(y+ ≈ 5) and the buffer layer (y+ ≈ 16) (left and center pan-
els) with convective velocities of these structures exceeding
3.5 times the mean flow in the viscous sublayer. The pen-
etration of these structures into the near-wall region (Kim
& Hussain, 1993; del Álamo & Jiménez, 2009) has been
posited as the mechanism leading to the convective veloc-
ities of fluctuating quantities exceeding the mean velocity
near the wall.

The scale dependent convective velocity results in Fig-
ure 2 indicate the influence of fast moving structures cen-
tered further away from the wall, but with a footprint very
near the wall due to their large size (Hutchins et al., 2011).
These large wavelength structures predicted through the
input-output mapping employed here resemble the large,
channel-filling modes of Bullock et al. (1978). This con-
nection was also proposed by del Álamo & Jiménez (2009)
based on their finding that uc at the largest wavelengths is
coherent throughout the channel. Our results further sup-
port their conjecture that it is the influence of these struc-
tures that leads to the breakdown of Taylor’s hypothesis in
the near-wall region. Further analysis of this phenomena is
the subject of ongoing work.

We next use the input-output framework to further an-
alyze the contribution of different linear mechanisms to
the convective velocity of the vorticity fluctuations. The
linearized equation of streamwise vorticity fluctuations is
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(a)

(b)

(c)

Figure 2: Scale dependent convective velocity of vorticity fluctuations at Reτ = 1000 normalized by the local mean velocity
ψc(y;λx,λz)/ū(y) in the viscous sublayer y+≈ 5, the buffer layer y+≈ 16, and the log-law region y+≈ 96. Panel (a) streamwise
vorticity fluctuations ψ = ωx, (b) wall-normal vorticity fluctuations ψ = ωy, and (c) spanwise vorticity fluctuations ψ = ωz.
The black dashed lines indicate the (λx,λz) = (2,0.4) cutoff for the large scales identified by del Álamo & Jiménez (2009).
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(a)

(b)

Figure 3: The deviation of convective velocity of associated with (a) the mean shear term (IIa) and (b) the viscous term (IIb) in
equation (10) . All values are normalized by kxū(y)〈ω̂ ′xω̂ ′x

∗〉, and the Reynolds number is Reτ = 1000. The black dashed lines
indicate (λx,λz) = (2,0.4).

given by:

ikx(ū− c)ω̂x
′+

IIa︷ ︸︸ ︷
dū
dy

ikxw′

IIb︷ ︸︸ ︷
− 1

Reτ

∆̂ω̂x
′ = [∇̂× f̂ff ]x. (9)

Here, the term (IIa) is induced by the mean shear, which
represents the net effects of the tilting and stretching of
the vorticity fluctuations by the mean flow and those of the
mean vorticity ∇× ū by the velocity fluctuations. Term (IIb)
represents the viscous diffusion in the wall-normal direc-
tion.

We perform a similar analysis to del Álamo & Jiménez
(2009) for the streamwise vorticity ωx in equation (9). In
particular, we first multiply it by ω̂ ′x

∗
and then take the

imaginary part of the result to obtain the following expres-
sion for c−ū(y)

ū(y) :

Im
{ IIa︷ ︸︸ ︷

dū
dy

ikx〈ŵ′ω̂ ′∗x 〉

IIb︷ ︸︸ ︷
−
〈∂yyω̂ ′xω̂ ′∗x 〉

Reτ

−〈[∇̂× f̂ff ]xω̂ ′∗x 〉
}

kxū(y)〈ω̂ ′xω̂ ′∗x 〉
. (10)

Equation (10) allows us to quantify each linear term’s con-
tribution to the deviation of convective velocity from the
mean velocity.

In our framework, modifying the output operator al-
lows us to directly compute the response of each of the
terms in equation (10). For example, we can redefine the
output operator C∂ 2

yyω̂ ′x
= ∂ 2

yyCω̂ ′x
to obtain: ∂ 2

yyω̂ ′x via equa-

tion (5). The cross-spectra 〈ŵ′ω̂ ′x
∗〉 and 〈∂ 2

yyω̂ ′xω̂ ′x
∗〉 are then

determined using a similar approach as in (6); for example:
〈ŵ′ω̂x

′∗〉= Gŵ′〈f̂′ f̂′∗〉G ∗ω̂x
′ = Gŵ′G

∗
ω̂x
′ . (11)

Figures 3 (a) and (b) show the respective contribu-
tion from the mean shear term (IIa) and the viscous term
(IIb) to the convective velocity of the streamwise vortic-
ity fluctuations. The results indicate that the mean shear
contributes slightly more to the deviation of the convective
velocity from the mean than the viscous term in the buffer
layer (y+ ≈ 16). However, in the viscous sublayer (y+ ≈ 5),
the viscous term provides a relatively larger contribution to
the deviation of the convective velocity from the mean than
the mean shear, which is similar to the authors observations
regarding the streamwise velocity fluctuations. The term
(IIa) may be estimated as ∼O(C/y), while the term (IIb) as
∼ O(C/y2). This estimation suggests that the viscous dif-
fusion effect is decreasing faster than the mean shear as the
distance from the wall increases, but the viscous diffusion is
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more important as we approach the wall. This is consistent
with the observation in Figure 3.

CONCLUSIONS
In this work, we apply an input-output model to analyze
convective velocities of vorticity fluctuations in a turbulent
channel. The average and scale dependent convective ve-
locities obtained using the proposed model reproduce the
mean trends previously observed in the literature. Our ap-
proach further allows us to isolate the contribution of each
scale and linear mechanism to the deviation of convective
velocity from the local mean, thereby providing insight into
the underlying flow dynamics. A term by term analysis in-
dicates that the viscous term has a slightly larger contribu-
tion to the convective velocity of streamwise vorticity than
the mean shear but that it is this term that captures the influ-
ence of large scale structures on the near-wall region. This
analysis suggests that including an additional viscous term
in Taylor’s hypothesis has the potential to capture the ef-
fect of large scale structures (λx,λz)> (2,0.4) on the local
convective velocity near the wall (del Álamo & Jiménez,
2009). Further analysis of the underlying mechanism and
exploring associated corrections to Taylor’s Hypothesis are
directions of ongoing work.
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Jovanović, M. R. & Bamieh, B. 2005 Componentwise en-
ergy amplification in channel flows. J. Fluid Mech. 534,
145–183.

de Kat, R. & Ganapathisubramani, B. 2015 Frequency-
wavenumber mapping in turbulent shear flows. J. Fluid
Mech. 783, 166–190.

Kim, J. 2011 Physics and control of wall turbulence for drag
reduction. Philos. Trans. Royal Soc. A 369 (1940), 1396–
1411.

Kim, J. & Hussain, F. 1993 Propagation velocity of pertur-
bations in turbulent channel flow. Phys. Fluids A 5 (3),
695–706.

Krogstad, P., Kaspersen, J. H. & Rimestad, S. 1998 Convec-
tion velocities in a turbulent boundary layer. Phys. Fluids
10 (4), 949–957.

Lee, M. & Moser, R. D. 2015 Direct numerical simula-
tion of turbulent channel flow up to Reτ = 5200. J. Fluid
Mech. 774, 395–415.

LeHew, J., Guala, M. & McKeon, B. J. 2011 A study of the
three-dimensional spectral energy distribution in a zero
pressure gradient turbulent boundary layer. Exp. Fluids
51 (4), 997–1012.

Lin, C. C. 1953 On Taylor’s hypothesis and the accelera-
tion terms in the Navier-Stokes equations. Q. Appl. Math.
10 (4), 295–306.

Liu, C. & Gayme, D. 2018 Input-output based analysis of
convective velocity in turbulent channels. Bull. Am. Phys.
Soc., Atlanta, GA, 63 (13).

Luhar, M., Sharma, A. S. & McKeon, B. J. 2014 On the
structure and origin of pressure fluctuations in wall tur-
bulence: predictions based on the resolvent analysis. J.
Fluid Mech. 751, 38–70.

Marusic, I. & Monty, J. P. 2019 Attached eddy model of
wall turbulence. Annu. Rev. Fluid Mech. 51, 49–74.

McKeon, B. J. & Sharma, A. S. 2010 A critical-layer frame-
work for turbulent pipe flow. J. Fluid Mech. 658, 336–
382.

Moarref, R., Sharma, A. S., Tropp, J. A. & McKeon,
B. J. 2013 Model-based scaling of the streamwise energy
density in high-Reynolds-number turbulent channels. J.
Fluid Mech. 734, 275–316.

Perry, A. E., Henbest, S. & Chong, M. S. 1986 A theoret-
ical and experimental study of wall turbulence. J. Fluid
Mech. 165, 163–199.

Renard, N. & Deck, S. 2015 On the scale-dependent
turbulent convection velocity in a spatially developing
flat plate turbulent boundary layer at Reynolds number
Reθ = 13000. J. Fluid Mech. 775, 105–148.

Robinson, S. K. 1991 Coherent motions in the turbulent
boundary layer. Annu. Rev. Fluid Mech. 23 (1), 601–639.

Waleffe, F. 1997 On a self-sustaining process in shear flows.
Phys. Fluids 9 (4), 883–900.

Weideman, J. A. C. & Reddy, S. C. 2000 A MATLAB
differentiation matrix suite. ACM Trans. Math. Softw.
26 (4), 465–519.

Wills, J. A. B. 1964 On convection velocities in turbulent
shear flows. J. Fluid Mech. 20 (3), 417–432.
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