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ABSTRACT
Dynamic Mode Decomposition (DMD) is being used

in recent years to analyze and derive low order models of
complex systems including fluid flows. Anantharamu &
Mahesh (2019) proposed a novel DMD algorithm suitable
for analysis of large datasets, which is used here to ana-
lyze the complex flow field of a reverse rotating propeller
attached to hull. The datasets employed in the present
work are obtained from the large eddy simulation results
of Verma et al. (2012). The employed DMD algorithm is
well-suited for such large datasets due to its memory and
computational efficiency, and better accuracy, compared to
other popular streaming DMD algorithms. The DMD spec-
tra for both datasets show dominant peaks consistent with
the previously reported force spectra. The corresponding
DMD modes are analyzed for their relevence to overall dy-
namics.

INTRODUCTION
Dynamic mode decomposition (DMD) (Schmid, 2010;

Rowley et al., 2009) is an attractive tool to study complex
physical as it isolates the regions associated with a par-
ticular frequency through the computed DMD modes and
eigenvalue. Each DMD mode has its own amplitude signi-
fying its contribution to the overall system dynamics. Since
it was first proposed, there are numerous variations of the
original method available in literature, each with its own
merits and demerits depending on the problem at hand. The
key idea of DMD is to approximate eigenvectors and eigen-
values of the unknown system matrix from the snapshots
matrix. Each of the DMD modes has an assigned eigen-
value that gives its temporal growth/decay rate along with
its frequency. The readers are referred to the reviews by
Mezić (2013) and Rowley & Dawson (2017) for detailed
information about these methods.

Most of the popular DMD methods are not efficient
in handling large datasets typically obtained in any high-

fidelity simulation. Moreover, the accuracy of the extracted
modes and eigenvalues are usually unknown for a given
number of snapshots. To overcome these shortcomings,
(Anantharamu & Mahesh, 2019) proposed a DMD algo-
rithm suitable for large datasets. The algorithm is parallel
and streaming with low memory requirement and compu-
tational cost. Additionally, the algorithm provides error in-
dicator for each of the DMD mode and eigenvalue pairs.
Owing to the dependency of DMD on the snapshot vec-
tors, it was discussed the finite precision errors can be detri-
mental if the condition number of the snapshot matrix is
large. Also, different DMD algorithms which are theoret-
ically identical can lead to different results. For snapshot
matrices with large condition number, FOA based DMD
has an optional rank truncation step to reduce errors in the
computed modes without losing its streaming property. A
detailed analysis of the computational cost and memory
requirement of FOA based DMD can be found in Anan-
tharamu & Mahesh (2019).

Verma et al. (2012) performed LES of flow over pro-
peller attached to hull in crashback, which is an off-design
operating condition where the flow due to propeller rotation
is opposite to the incoming freestream. Crashback condi-
tion is characterized by massive flow separation and large
propeller loads due to formation of a ring vortex as shown in
Figure 1. They simulated crashback flow over a marine pro-
peller (DTMB P4381) with and without an axisymmetric
hull (DTMB 5495-3) at a Reynolds number ReD = 480000
for two dvance ratios J = −1 and J = −0.5. Here J = U

nD
and Re = UD

ν
, where U is the freestream velocity, n is the

propeller rotation rate, ν is the kinemetic viscosity and D
is the propeller diameter. Their simulations reproduced the
experimentally observed behaviour of high side force in the
presence of hull at higher negative advance ratio (Bridges,
2004). Based on their results, they proposed a mechanism
to explain this behaviour.

In this paper, the datasets of Verma et al. (2012) are
used to perform DMD. The simulation details of Verma
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Figure 1: Schematic of flow over propeller in crash-
back.

et al. (2012) are briefly summarized in the next section,
followed by an overview of the DMD algorithm of Anan-
tharamu & Mahesh (2019). Finally, the DMD results are
discussed in detail, followed by a brief summary of the
present work.

SIMULATION DETAILS
In LES, large scales are resolved by the spatially fil-

tered Navier–Stokes equations, whereas the effect of small
scales is modelled. Simulations are performed in a frame
of reference that rotates with the propeller. The spatially
filtered incompressible Navier–Stokes equations in the ro-
tating frame of reference are formulated for the absolute
velocity vector in the inertial frame as follows:

∂ui

∂ t
+

∂

∂x j
(uiu j−uiε jklωkxl) =

− ∂ p
∂xi
− εi jkω juk +ν

∂ 2ui

∂x j∂x j
−

∂τi j

∂x j

∂ui

∂xi
= 0

(1)

where ui is the inertial velocity in the inertial frame, p
is the pressure, xi are coordinates in the rotating non-
inertial reference frame, ω j is the angular velocity of the
rotating frame of reference, ν is the kinematic viscosity,
εi jk denotes the permutation tensor and the approximation
uiε jklωkxl ≈ uiε jklωkxl is used. The terms containing ω j in
the eq. 2.1 take into account the effect of rotating reference
frame which is non-inertial. ∂

∂x j
(−uiε jklωkxl) represents

Coriolis acceleration whereas −εi jkω juk is representative
of centrifugal acceleration. The overbar (·) denotes the spa-
tial filter and τi j = uiu j − uiu j is the sub-grid stress. The
sub-grid stress is modelled by the Dynamic Smagorinsky
Model (Germano et al., 1991; Lilly, 1992). The Lagrangian
time scale is dynamically computed based on surrogate–
correlation of the Germano–identity error (Park & Mahesh,
2009). This approach extended to unstructured grids has
shown good performance for a variety of cases including
flow past a marine propeller in crashback (Verma & Ma-
hesh, 2012).

Eq. 1 is solved by a numerical method developed by
Mahesh et al. (2004) for incompressible flows on unstruc-
tured grids. The algorithm is derived to be robust without

any numerical dissipation. It is a finite volume method
where the Cartesian velocities and pressure are stored at
the centroids of the cells and the face normal velocities
are stored independently at the centroids of the faces. A
predictor–corrector approach is used. The predicted veloc-
ities at the control volume centroids are first obtained and
then interpolated to obtain the face normal velocities. The
predicted face normal velocity is projected so that the con-
tinuity equation in eq. 1 is discretely satisfied. This yields
a Poisson equation for pressure which is solved iteratively
using a multigrid approach. The pressure field is used to
update the Cartesian control volume velocities using a least-
square formulation. Time advancement is performed using
an implicit Crank–Nicholson scheme. The algorithm has
been validated for a variety of problems over a range of
Reynolds numbers (see Mahesh et al., 2004).

FOA based DMD
Let M and N be the size and the number of snapshots

used to perform DMD. Assuming A to be the linear map-
ping between two successive snapshots, FOA based DMD
generates the set of Arnoldi vectors {vi}N

i=1 and the matrix
H̄N ∈ CN×(N−1) that are related to A as

AV N−1
1 =V N

1 H̄N ,

AV N−1
1 =V N−1

1 HN−1 +hN,N−1vNeH
N−1,

(2)

where vi ∈ CM , V N−1
1 ∈ CM×(N−1) is the matrix formed by

stacking the vectors {vi}N−1
i=1 as columns, HN−1 is the up-

per Hessenberg matrix and is the leftmost (N−1)×(N−1)
portion of H̄N , eH

N−1 is the transpose of the canonical basis
vector eN−1 ∈CN−1, hN,N−1 is the (N,N−1)th entry of the
matrix H̄N . Also, HN−1 is the projection of the linear map-
ping A onto the range of V N−1

1 . The DMD modes and eigen-
values are {V N−1

1 zi}N−1
i=1 and {λi}N−1

i=1 respectively, where
{λi,zi}N−1

i=1 are the eigenvalue and eigenvector pair of the
projected linear mapping HN−1.

In the present work, we use the batch processed form of
FOA based DMD without rank truncation described in algo-
rithm 1 to compute the DMD modes and eigenvalues. The
computation was performed using 192 processors and the
orthonormal matrix V N−1

1 and the upper Hessenberg matrix
H̄N are computed. The DMD modes for each J were com-
puted in an hour on Knights Landing cluster at the Texas
Advanced Computing Center. The matrix of snapshots are
loaded into memory and are overwritten by the orthonor-
mal matrix V N−1

1 thereby efficiently utilizing the available
memory.

Next, we review the auxillary tools of FOA based
DMD method for analysis of the computed DMD modes.
The coefficient vector {c} ∈ CN−1 of the first vector ψ1
when represented as a linear combination of the DMD
modes can be obtained by solving the (N−1)× (N−1)
matrix problem,

{c}= ‖ψ1‖2[z]−1e1, (3)

where [z] is the matrix formed by stacking the vectors z1 to
zN−1 as columns and e1 is the first canonical basis vector of
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1: Collect N snapshots and form XN
1 .

2: Construct initial vector v1 from the first snapshot,
v1 := ψ1

‖ψ1‖2
.

3: β1,1 = ‖ψ1‖2
4: for j=1 to N-1 do
5: β1, j+1 = h1,1: j−1β1: j−1, j
6: for i=2 to j do
7: βi, j+1 = hi,i−1: j−1βi−1: j−1, j
8: end for
9: w = 1

β j, j

(
ψ j+1−∑

j
i=1 βi, j+1vi

)
10: h1: j, j =V j

1
H

w
11: w = w−V j

1 h1: j, j

12: s1: j =V j
1

H
w

13: h1: j, j = h1: j, j + s1: j

14: w = w−V j
1 s1: j

15: h j+1, j = ‖w‖2;v j+1 =
w

h j+1, j

16: for i=1 to j+1 do
17: βi, j+1 = βi, j+1 +hi, jβ j, j
18: end for
19: end for
20: Define HN−1 := H̄N(1 : N−1,1 : N−1).
21: Compute right eigenvectors {zi}N−1

i=1 and eigenvalues
{λi}N−1

i=1 of HN−1.
22: DMD modes are {V N−1

1 zi}N−1
i=1 and DMD eigenvalues

are {λi}N−1
i=1 .

Algorithm 1: FOA based DMD in batch processed
form without rank truncation.

CN−1. We then have,

ψ1 =
N−1

∑
i=1

ciϕi, (4)

where ci is the ith entry of {c} and the DMD mode ϕi :=
V N−1

1 zi. The coefficient of all the snapshot vectors {ψi}N−1
i=1

as a linear combination of DMD modes {ϕi}N−1
i=1 can then

be obtained as

ψi =
N−1

∑
j=1

c jλ
i−1
j ϕ j; i = 1, . . . ,N−1. (5)

From the above expression we can define the spectra for
DMD modes corressponding to the ith snapshot as the set
of numbers {|c jλ

i−1
j |}

N−1
j=1 .

The residual of each DMD mode and the eigenvalue
can be computed. This residual serves as the error indicator
for the accuracy of the corressponding mode and eigenvalue
due to the error resulting from Galerkin projection. The
residual of ith DMD mode is computed as

‖AV N−1
1 zi−λiV N−1

1 zi‖2 = hN,N−1‖eH
N−1zi‖ (6)

RESULTS
The velocity vector at each control volume in the grid

is chosen to be the vector of observables. The set of observ-
able vectors is denoted as {ψi}N

i=1 where ψi ∈ RM , M is
the size of the observable vector ψi and N is the number of
snapshots. We define X j

i as a matrix ∈ RM×( j−i+1) formed

by the stacking the vectors ψi to ψ j as columns. For both
the cases, N = 1200 and M≈ 21.9×106 i.e. three times the
number of control volumes in the grid. The dataset for both
the advance ratio cases comprises 1200 snapshots spanning
T = 60 rotations of the propeller with a sampling rate . i.e.
∆t = 0.05 rotation time.

The 2-norm condition number κ2

(
XN−1

1

)
for J =

−0.5 and −1 cases is approximately 104 and 110 respec-
tively. Since, κ2 << 1/εm, rank truncation is not needed
to compute the DMD modes and eigenvalues. The normal-
ized DMD frequency f := log(λ )/(2π∆t). The imaginary
part of f will be called as the oscillation frequency of the
corresponding mode.

(a) J =−0.5

(b) J =−1

Figure 2: DMD eigenvalues.

Figure 2 shows the DMD eigenvalues for both the
cases. Most of the eigenvalues lie on the unit circle. The
DMD spectra showing the magnitude of component of the
projection of the last snapshot along each of the DMD
eigenvectors are plotted in figure 3. The peak at f ≈ 0 de-
notes the time-averaged flow field. The spectra show dom-
inant peaks at integral value of f for both the cases. Recall
that the frequency is normalized to be unity at the shaft fre-
quency. Table 1 and 2 shows the frequencies of the first five
dominant DMD modes for J = −0.5 based on the spectra
of the last snapshot along with the associated residual. The
error indicator (residual) suggests that the modes are con-
verged to accurate values and addition of more snapshots
would not change the results significantly.
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Table 1: Residual of the DMD modes sorted based on DMD
spectra of last snapshot for J =−0.5.

f Residual

−2.5e−5 9e−4

9.5e−4+1.0i 6.3e−3

2.2e−4+9.7e−1i 8.4e−3

−4.3e−4+3.6e−2i 9.8e−3

−2.6e−3+5.5e−2i 1e−2

Table 2: Residual of the DMD modes sorted based on DMD
spectra of last snapshot for J =−1.

f Residual

7e−5 1.7e−3

1.3e−4+1.12i 2.6e−3

1.6e−4+2.23e−1i 0.9e−2

−3.9e−4+0.97i 1.03e−2

−1.5e−3+2.08e−2i 1.33e−2

DMD modes with the smallest real and imaginary part
are shown in figure 4 for both the cases. A slice facing
downstream through the propeller blade with contour plot
of the x-component of the DMD modes is shown. These
correspond to the mean flow for both the cases. We can see
that the regions in the vicinity of the blade have reverse flow
in the mean when compared with the free stream velocity.

In figure 5, we show a side view of the iso-surface of
the streamwise (x) component of the real part of the dom-
inant DMD mode with imaginary part of frequency f ≈ 1.
The translucent slice is colored with the same quantity. Fig-
ure 5(b) is further elucidated in figure 6 by plotting stream-
traces that pass through the plotted isosurfaces. The stream-
traces close to the blade show that these modes correspond
to the vortex shedding mode. The vortices are formed due
to the interaction of the reverse flow due to the propeller
with the freestream. Once the vortex is shed near the pro-
peller blade, they undergo swirling motion due to the pro-
peller rotation as seen from figure 6. It can be seen that for
J =−0.5 the mode has a signficant component in the region
upstream of the propeller on the hull whereas for J = −1
it is dominant only in the downstream of the propeller.
This is because of the stronger reverse flow in J = −0.5
than in J = −1. Also, for J = −1 the modes are wrapped
around closer to the blade than for J = −0.5 which qual-
itatively indicates closer location of the vortex to the pro-
peller blade. This is consistent with the observation in LES
of Verma et al. (2012). Since, the propeller has 5 blades,
DMD modes that oscillate with frequency approximately 1
(i.e. im( f ) ≈ 1) leads to a peak at f ≈ 5 in the integrated
side force spectra of the propeller blade. This is because
the approximate aziumthal wavenumber of the mode is also
1. Hence, the propeller sees a similar configuration of the
flow (but rotated) for every (1/5)th rotation of the propeller

(a) J =−0.5

(b) J =−1

Figure 3: DMD spectra for the last snapshot.

blade thus explaining the peak at 5 in the force spectra of
the propeller.

Figure 7 shows the x-component of the real part of the
dominant DMD modes oscillating with frequency ≈ 2. The
azimuathal wavenumber of these modes is seen to be ≈ 2.
These modes contribute to the force spectra of the propeller
blade at frequencies f ≈ 10. The presence of higher har-
monics of the fundamental shedding frequency is similar
to that seen in the DMD modes obtained for the snapshots
comprising vortex shedding behind circular cylinders. It is
interesting to observe similar behavior in the complex flow
configuration of a propeller in crashback mode.

CONCLUSION
We have performed DMD of the dataset of propeller

in crashback mode at J = −0.5 and J = −1 using the re-
cently proposed parallel FOA based DMD algorithm pro-
posed suitable for large datasets. The algorithm helps pick
out the dominant DMD mode and also the error in each
mode due to Galerkin projection. The two dominant DMD
modes for both cases are seen to be associated with the vor-
tex shedding due to the interaction of the reverse flow of the
propeller with the freestream with imaginary part of the fre-
quency ≈ 1 and 2 which contribute to the force spectra of
the propeller at ≈ 5 and 10 respectively. The mode shapes
are qualitatively seen to be consistent with the previous LES
of Verma et al. (2012). These dominant mode shapes form
a low-dimensional set of basis vectors which help build a
reduced order model for a high Reynolds number flow field
of propeller in crashback mode.
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(a) J =−0.5
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(b) J =−1

Figure 4: The DMD mode at f =−2.5×10−5 for J =
−0.5 (top) and (b) f = 7×10−5 for J =−1 (bottom).
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