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ABSTRACT
Making use of a recently proposed, Schur decomposi-

tion approach to the analysis of the velocity gradient tensor
(VGT), we provide a preliminary study of the resulting new
terms for the case of a turbulent channel flow in the outer
part of the logarithmic region. Previously, this approach
has only been used for homogeneous, isotropic turbulence
(HIT). In particular, we define six regions in the space of
the second and third invariants of the tensor (the Q-R di-
agram) and condition our analysis on these regions and if
the flow is undergoing a significant ejection or sweep event.
When comparing the tendency for the VGT to form rod-like
or disc-like structures, the results are very close to those for
HIT. However, that the differences between ejections and
sweeps are greater than this in the regions where Q and R
are negative indicates a topological difference of potential
significance for dissipation modelling. Where Q and R are
negative, but the VGT’s eigenvalues are complex we find
a particularly strong tendency for the dynamics to be dom-
inated by the non-normal contribution to the second order
terms. In the more strongly vortical regions, the non-normal
contribution to the sweeps is greater than for the ejections.

INTRODUCTION
Studies of the velocity gradient tensor (VGT) for in-

compressible turbulent flows have revealed that the joint
probability distribution function for the second (Q) and
third (R) invariants of the tensor appear to have univer-
sal characteristics when the turbulence is fully developed
(Chacin & Cantwell, 2000; Gomes-Fernandes et al., 2014;
Buxton et al., 2017) and an example distribution function
is provided in Fig. 1. Understanding the dynamics that
lead to this distribution is an important pathway for develop-
ing new closures for large-eddy simulations (Biferale et al.,
2007; Wilczek & Meneveau, 2014) and much of this previ-
ous work has been reviewed by Meneveau (2011). While
the Q-R diagram clearly contains significant information on
turbulence, the second invariant represents the difference
between enstrophy and total strain, and the third invariant
the difference between strain production and enstrophy pro-
duction, and there are significant dynamical effects associ-
ated with these individual terms (?). What is not clear at
present is how these latter processes vary for different flows,
and how local and non-local effects contribute to these dy-
namics. This is an important research question because dif-

Figure 1. The joint probability distribution function for
the second (Q) and third (R) invariants of the velocity gradi-
ent tensor, including the discriminant, ∆ = 0, and the typol-
ogy for the six regions adopted in this study. The distinctive
Vieillefosse tail (Vieillefosse, 1984) is also highlighted.

ferent forcings introduce different vortex interactions (Na-
gata et al., 2013), influencing the nature of the non-local
contributions and, thus, dissipation (Vassilicos, 2015).

One of the most important flows to consider from
a practical perspective is achannel flow as the autogenic
generation of flow structures near the wall (Zhou et al.,
1999) results in a potential complexity to these small-scale
processes, the understanding of which can enhance ap-
plied modelling methods (such as large-eddy simulation
closures). The first study to consider the Q-R dynamics
of a turbulent boundary-layer in detail was that by Chacin
& Cantwell (2000). It was found that the ejection and
sweep events occurred preferentially along the Vieillefosse
tail seen in Fig. 1, while the more strongly persistent vor-
tical structures were relatively passive in terms of the wall
dynamics.

Recently, a Schur decomposition of the velocity gradi-
ent tensor has been introduced and the additional terms that
result studied for the case of homogeneous, isotropic turbu-
lence (Keylock, 2018). Here we provide some initial results
on the examination of these terms for a direct numerical
simulation of a channel flow.
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KEY CONCEPTS
Taking the spatial derivative of the Navier-Stokes equa-

tions leads to an evolution equation for the velocity gradient
tensor (VGT), A, for turbulence. Defining Ai j = ∂ui/∂x j,
the strain, SA, and rotation, ΩA, may be evaluated directly

SA =
1
2
(A+AT) (1)

ΩA =
1
2
(A−AT) (2)

where the ‘T’ superscript indicates a transpose. The charac-
teristic equation for A is

λ
3
i +Pλ

2
i +Qλi +R = 0 (3)

and incompressibility means that the first invariant, P = 0,
leaving the second and third invariants, which are tradition-
ally expanded in terms of SA and ΩA as

Q =
1
2
(||ΩA||2−||SA||2)

R =−det(SA)− tr(Ω2
ASA) (4)

where || . . . || is the Frobenius norm. The primary disad-
vantage of an eigenvalue-based analysis of the VGT is that
it is not an additive decomposition of the tensor, in con-
trast to A = SA +ΩA, with residual information left in the
non-unitary eigenvectors. However, an additive decompo-
sition may be accomplished by using the Schur decomposi-
tion (Schur, 1909), which imposes a unitary struture on the
rotation matrix

A =UTUT

T = L+N (5)

where L is a diagonal matrix of eigenvalues, Lii = λi, and
N is (block) upper triangular and contains the non-normal
components of the tensor, such that the Frobenius norm of
N, ||N||, is a well-known measure of matrix non-normality
(Henrici, 1962). This then leads to an additive decomposi-
tion, A = B+C, where B = ULUT and C = UNUT, from
which it is possible to obtain corresponding strain and rota-
tion tensors (Keylock, 2018).

Evolution equations for the invariants can be written
only in terms of each other if the non-normal contributions
to the tensorial dynamics (from viscosity and the deviatoric
part of the pressure Hessian) are ignored (Cantwell, 1992),
it follows that we can write

Q =
1
2
(||ΩB||2−||SB||2)

R =−det(SB)− tr(Ω2
BSB) (6)

However, as, for example, ||SA||2 6= ||SB||2 in general, it
follows that terms that contribute to each invariant are elim-
inated when the differences in (4) are taken. The missing
term for the normal enstrophy and normal total strain is the
non-normality ||ΩC||2 such that,

||SA||2 = ||SB||2 + ||ΩC||2

||ΩA||2 = ||ΩB||2 + ||ΩC||2 (7)

For the equation for the third invariant, there are two
new terms, which appear in both the expressions for strain
production and enstrophy production

−det(SA) =−det(SB)+ tr(Ω2
CSB)−det(SC)

tr(Ω2
ASA) = tr(Ω2

BSB)+ tr(Ω2
CSB)−det(SC) (8)

where, from left to right, the strain production is given by
the sum of the normal strain production, the interaction pro-
duction and the non-normal production, and the enstrophy
production is the sum of the normal enstrophy production,
the interaction production and the non-normal production.

The second consequence of our approach is the defini-
tion of rotation and, thus, enstrophy. In a Lagrangian frame,
the existence of a conjugate pair of eigenvalues means that
there is a closed streamline (and, thus, a vortex accord-
ing to swirl-based measures of flow structure Zhou et al.
(1999)). This fact is explicit in our formulation because
||ΩB|| = 0 if ∆ ≤ 0 where ∆ = Q3 +(27/4)R2 is the dis-
criminant function such that a conjugate pair of eigenvalues
for the VGT arises when ∆ > 0. In other words, when all
the eigenvalues of the VGT are real, Q = −0.5||SB||2 and
R = −det(SB). Related to this is the advantage that arises
from the A = B+C decomposition when considering the
straining behaviour of the tensor: the sign of R dictates the
signs for −det(SB) and tr(Ω2

BSB), with R > 0 resulting in
−det(SB) > 0 and tr(Ω2

BSB) < 0. Given that no such con-
straint exists on the signs for −det(SA) and tr(Ω2

ASA), devi-
ations from this pattern highlight the importance of one or
both of the interaction production and non-normal produc-
tion terms in (8).

In this paper we apply this framework to the case of tur-
bulent channel flow, relative to the behaviour for homoge-
neous isotropic turbulence that we have studied previously
(Keylock, 2018).

TURBULENT CHANNEL FLOW SIMULATION
The simulation we have used in this work is that by

Graham et al. (2016) based on the simulation by Lee &
Moser (2015) and is stored as part of the Johns Hopkins
Turbulence Database (Li et al., 2008). The domain size is
8πh×2h×3πh where h is the channel half height. The bulk
velocity is Ub = 0.99994, the kinematic viscosity is ν = 5×
10−5, and the shear velocity is uτ = 4.9968×10−2, giving a
friction velocity Reynolds number of Reτ = uτ h/ν ∼ 1000.
We focussed on a region with longitudinal and transverse
dimensions of πh×πh in extent and extracted data at a res-
olution of 2562 velocity gradient tensors in such a plane. We
concentrated on the logarithmic part of the velocity profile
by extracting 256 of these planes at evenly spaced distances
from 70 ≤ y+ ≤ 350 in the outer region of the logarithmic
region of the velocity profile, where the plus indicates that
wall units are adopted. Extracted velocity gradients were
non-dimensionalized using u2

τ/ν .

RESULTS
Here we focus on three properties of the VGT in the

channel flow: the nature of the strain eigenvalues and the
tendency for the flow to behave in a disc-like or rod-like
fashion, and then the typical depth averaged values of the
terms that feature in (7) and (8) as a function of region of
the Q-R diagram and whether or not an ejection or sweep is
occurring.
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Straining Structure
It was clear from early simulations of turbulent flow

fields that there was a tendency for the strain tensor, SA,
to have two positive eigenvalues, meaning that turbulence
preferentially forms disc-like rather than rod-like structures
(Kerr, 1985; Ashurst et al., 1987; Li & Meneveau, 2007).
An effective index to investigate this is that due to Lund &
Rogers (1994):

e(A)LR =
−3
√

6det(SA)

tr(S2
A)

3
2

(9)

where−1 < e(A)LR < 1. However, it follows from (8) that this

index may be expanded in a similar fashion to give e(A)LR =

e(B)LR + e(I)LR + e(C)
LR (Keylock, 2018), where the superscripts

‘B’ and ‘C’ indicate which strain tensor is applied in the
numerator of (9), and

e(I)LR =
−3
√

6tr(Ω2
CSB)

tr(S2
A)

3
2

(10)

Figure 2 gives the mean values for these indices as a func-
tion of height and region of the Q−R diagram. There is
little vertical variation over this range of y+ and all the val-
ues shown are within 0.019 of the equivalents for homo-
geneous isotropic turbulence we have reported previously
(Keylock, 2018). The necessary condition that R > 0 (red
lines) correspond to positive values for e(B)LR and negative
values are associated with R < 0 (blue lines) is clear from
panel (b). What is particularly clear is how this decompo-
sition explains the dominance of the disc-shaped topology
when, based on the relative occupancy of the different re-
gions of the Q−R diagram and a focus on the local con-
tribution, e(B)LR , one would expect discs to favour rods in the

approximate ratio of 55:45. However, that 〈e(I)LR〉 is positive
in all regions except region 1 and is particularly positive in
regions 2 and 3, where e(B)LR < 0 explains why this disc-like
nature to the flow arises, with the weakly positive contri-
bution of 〈e(C)

LR 〉 of secondary importance to the average re-
sults.

Both regions close to the Vieillefosse tail have 〈e(A)LR 〉 ∼
0.6, but the value in region 1 is close to zero. While 〈e(B)LR 〉
is less strongly positive than for regions 5 and 6, the cru-
cial factor explaining this behaviour is the negative value
for 〈e(I)LR〉, which is unique to this region. Thus, the action
of normal straining on the non-local enstrophy results in a
stretching action that is of sufficient magnitude to almost
completely overcome, in the mean, the compressive action
of the normal straining on the normal enstrophy. As a con-
sequence, the two regions with Q > 0 both typically have a
strong misalignment between the orientation of ΩB and ΩC
such that the action of SB has an opposite effect when ap-
plied to each component of the enstrophy. However, in the
case of region 1 these two effects are approximately equal
and opposite (〈e(B)LR 〉 ∼ 0.11, 〈e(I)LR〉 ∼ −0.14), while in re-

gion 2 〈e(A)LR 〉 ∼ 0.33 as a consequence of 〈e(B)LR 〉 ∼ −0.12,

〈e(I)LR〉 ∼ 0.35 and 〈e(C)
LR 〉 ∼ 0.1.

Reynolds averaging of the Navier-Stokes equations
leads to a Reynolds stress tensor given by τR =−ρu′iu

′
j. In a

boundary-layer the dominant shear term involves the longi-
tudinal and vertical velocity components, and the joint prob-
ability distribution function for these terms may be disag-
gregated into quadrants (Bogard & Tiederman, 1986; Key-
lock et al., 2014), where the most significant occurrences
are those that contribute positively to the Reynolds stress:
the ejections (quadrant 2) and sweeps (quadrant 4). The ap-
plication of quadrant analysis commonly involves the use
of a threshold hole size, expressed in terms of the standard
deviation, σ(. . .), of the velocity components. In this study
we use a hole size of 2. That is, a quadrant occurs when
|u′iu′j|> 2σiσ j.

Given that none of the results for e(A)LR in Fig. 2 differ
from those for HIT by more than 0.019, the differences be-
tween ejections and sweeps in Fig. 3 appear to have some
significance, particularly for regions 3 and 4 of the Q-R
diagram. It is the normal contribution, e(B)LR that appears
to be the most important contributing term, and this has
negative values in these regions, meaning that the sweeps
are the events with the more rod-like topology in these re-
gions. Given that it is vortex compression that tends to lead
to dissipation (Tsinober, 2001), the implication is that, in
these regions in particular, conditioning the degree of dis-
sipation in a closure model on the nature of the quadrants
that constitute the Reynolds stress is advantageous as the
sweeps are likely to promote less dissipation than an equi-
librium model that balances production and dissipation in-
stantaneously and locally, is likely to assume.

The Decomposition of Q
The results in Figure 4 show the values for the 95th

quantile of the distribution for each of the three terms from
(7) sub-divided by the region of Q-R space and if they arise
in ejection events (left-hand panels in each pair) or sweeps
(right-hand panels). Note that while the relative magnitudes
of total strain (red) and enstrophy (black) are necessarily a
function of the rows of the diagram (because Q decreases
in value from top to bottom), the Q-R diagram says noth-
ing about the magnitude of ||ΩC||2. This term is found to
dominate in three of the four cases in regions 3 and 5, par-
ticularly for the ejections in region 3. The greatest amount
of normal stress arises for the ejections in region 6, while
the largest normal enstrophy arises for the sweeps, with the
relative difference between sweeps and ejections greatest in
region 1. Hence, the term in (7) that is neglected when Q is
the focus of analysis, is the most important in regions where
the VGT eigenvalues are complex but total strain exceeds
enstrophy.

The Decomposition of R
Similar results for the production terms are provided in

Fig. 5, the difference being that because these terms can be
either positive or negative, the profile-averaged values for
the 5th and 95th percentiles are shown, with a line connect-
ing these two values. In the top row it is clear that normal
enstrophy production has the greatest magnitude in regions
1 and 2, and is greater for sweeps than ejections. However,
it is the ejections where the interaction production is greater
on average when examining the net contribution in the same
direction as the normal enstrophy. Interaction production is
of particular importance to the dynamics of both types of
boundary-layer event in region 3, as well as ejections in re-
gion 4, while normal strain production is dominant in both
regions 5 and 6, but this is particularly the case for ejec-
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Figure 2. Profiles of the mean values for the conventional Lund & Rogers (1994) index for the strain tensor, SA are shown in
(a), with the normal contribution, interaction production contribution, and non-normal contributions given in (b), (c), and (d)
respectively. An enlarged version of the latter is also shown. Results are subdivided by the six regions of the Q−R diagram,
with red for positive R regions and blue for negative R.
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Figure 3. Profiles of the differences in mean values for the
eLR indices between quadrant 2 (ejections) and quadrant 4
(sweeps). Results are subdivided by the six regions of the
Q−R diagram, with red for positive R regions and blue for
negative R.

tions. While the non-normal production term is, on average,
the term with the smallest magnitude, the range of values is
comparable to tr(Ω2

CSB), and greater than that for normal
strain production in the strongly vortical regions (regions
1 and 2). This term is of greater variability in the case of
the sweeps and, because of its (weak) bias towards positive
values acts in the same sense of the normal enstrophy pro-
duction in region 2, and in opposition in region 1. Thus the
sum of these effects, seen in a traditional analysis fails to ac-
count for differences that arise because of the asymmetries
in the underlying equations (normal enstrophy production
is negative in region 1, 5 and 6, and positive in regions 2,
3, and 4, while the interaction production and non-normal
production contributions are typically positive. By isolat-
ing these dynamical contributions, there is greater potential
to examine the interplay between local and non-local pro-
cesses.

CONCLUSIONS
Adopting the Schur decomposition approach to the

study of the velocity gradient tensor permits more refined
analyses of turbulence dynamics as there are seven terms
generated rather than four, with significant constraints on

the signs or existence of the various normal terms in differ-
ent parts of the Q-R diagram. In terms of the topology of
the strain tensor the differences in values between ejections
and sweeps is greater in regions 3 and 4 than between the
channel flow results and those for HIT, implying that these
preliminary results, at the very least, indicate a topological
difference between ejections and sweeps where R is nega-
tive and Q is negative. Further work is needed to demon-
strate broader significance to these results, but that the e(I)LR
term is important to these differences in topology, and that
this reflects, in part, non-local contributions to the turbu-
lence dynamics, indicates that the structure of the surround-
ing field is having some differential impact on the manner
in which the ejection events behave relative to the sweeps.
In general, the effect of the non-normal or interaction terms
is greatest in region 3, and the results in the middle row of
Fig. 5 justify the division of the Q-R space into six regions,
rather than the four that arise when one focuses purely on
topology (Chong et al., 1990).

Given the work showing how the dissipation coeffi-
cient in turbulence depends on the structure of the turbu-
lence flow field (in particular the stagnation point structure)
(Goto & Vassilicos, 2009), and the work on non-equilibrium
turbulence that has shown how mixing is influenced by the
arrangement of vortices (Laizet & Vassilicos, 2012), isolat-
ing the non-local contributions as was done here and in our
study of HIT (Keylock, 2018) should help us to understand
and therefore model the role of non-local contributions on
the dyanmics for various forcing strategies.
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