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ABSTRACT
One of the most puzzling and dramatic phenomena in

non-Newtonian flow is the substantial reduction of turbulent
energy dissipation (drag) that occurs when a small amount
of a long-chain polymer is added to a liquid. If the Reynolds
number is sufficiently low, a turbulent channel flow will
laminarize as polymer concentration increases, but then be-
come turbulent again at higher concentration. Direct simu-
lations of flow in the latter “elastoinertial turbulence” (EIT)
regime indicate the presence of localized polymer stretch
fluctuations. These observations, along with linear stabil-
ity and resolvent analyses, show that the turbulent fluctua-
tions resemble Tollmien-Schlichting (TS) modes. Although
these are found in Newtonian flows, they do not play a role
in fully-developed Newtonian turbulence. In the polymeric
case, however, polymer stresses suppress the normal tur-
bulent structures while amplifying the TS modes. Finally,
we present results on the existence of a new nonlinear self-
sustaining state which we term the lower branch attractor
(LBA), which coexists in parameter space with EIT but has
very small amplitude. The structure of this flow very closely
resembles that of the linear TS mode. A tentative bifurca-
tion scenario describing our observations is presented.

RESULTS
For polymer solutions under some flow conditions,

transition to turbulence occurs via the usual bypass tran-
sition as Reynolds number Re increases. With further in-
crease in Re, onset of drag reduction occurs and the flow
eventually approaches the so-called maximum drag reduc-
tion (MDR) asymptote, an experimental upper bound on the
degree of drag reduction.

Under other conditions, however, flow transitions di-
rectly from laminar flow into the MDR regime and can do
so at a Reynolds number where the flow would remain lam-
inar if Newtonian. This phenomenon is known as “early
turbulence” (Forame et al. (1972); Choueiri et al. (2018)).
Recent experiments and simulations (Samanta et al. (2013);
Sid et al. (2018)) suggest that turbulence in this regime

has structure very different from Newtonian, denoting it
as “elastoinertial turbulence” (EIT). Choueiri et al. (2018)
experimentally observed that at very low (i.e. transitional)
Reynolds numbers and increasing polymer concentration,
turbulence is first suppressed, leading to relaminarization,
and then reinitiated with an EIT structure and a level of drag
corresponding to MDR. This result indicates that there are
actually two distinct types of turbulence in polymer solu-
tions, one that is suppressed by viscoelasticity, and one that
is promoted.

The present work extends Shekar et al. (2019), report-
ing computations and analysis for plane channel flow of
a FENE-P fluid that elucidate the mechanisms underlying
EIT. We show that EIT at low Re has highly localized poly-
mer stress fluctuations. Surprisingly, these strongly resem-
ble linear Tollmien-Schlichting modes as well as the most
strongly amplified perturbations from the laminar state.
Furthermore, the kinematics of self-sustained nonlinear TS
waves generate sheetlike structures in the stress field similar
to those observed in EIT. Lastly, we establish the existence
of a new nonlinear self-sustaining attractor whose ampli-
tude is very small relative to EIT and whose bulk structure
very closely resembles the linear TS mode.

Formulation: We consider pressure-driven channel
flow with constant mass flux. The x, y and z axes are aligned
with the streamwise (overall flow), wall-normal and span-
wise directions, respectively. Lengths are scaled by the
half channel height l so the dimensionless channel height
Ly = 2. The domain is periodic in x and z with periods Lx
and Lz. Velocity vvv is scaled with the Newtonian laminar
centerline velocity U ; time t with l/U , and pressure p with
ρU2, where ρ is the fluid density. The polymer stress tensor
τττ p is related to the polymer conformation tensor ααα through
the FENE-P constitutive relation.

Here Re = ρUl/(ηs + ηp), where ηs and ηp are the
solvent and polymer contributions to the zero-shear rate vis-
cosity. The viscosity ratio β = ηs/(ηs +ηp); polymer con-
centration is proportional to 1− β . We fix β = 0.97 and
maximum extensibility b= 6400. The Weissenberg number
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Figure 1: Scaled friction factor vs. Wi at Re =
1500. Abbreviations ‘NT’, ‘L’ and ‘EIT’ stand for
Newtonian-like turbulence, laminar and elastoinertial
turbulence, respectively. In most cases, the error bars
are smaller than the symbols. Red dotted lines in-
dicate the intervals of Wi in which the NT solution
loses existence and the EIT solution comes into exis-
tence, respectively, as Wi increases. Inset shows the
spatial spectrum of the wall normal velocity at y = 0
for Wi = 20. Here, x- and z-wavenumbers kx and kz
are reported in scaled form, as kxLx/2π and kzLz/2π .
For inset, low is blue, high is yellow. Reproduced
with permission from Shekar et al. (2019).

Wi = λU/l, where λ is the polymer relaxation time, mea-
sures the ratio between the relaxation time for the polymer
and the shear time scale for the flow.

For the nonlinear direct numerical simulations (DNS)
described below, a finite difference scheme and a frac-
tional time step method are adopted for integrating the
Navier-Stokes equation. Second-order Adams-Bashforth
and Crank-Nicolson methods are used for convection and
diffusion terms, respectively. The FENE-P equation is dis-
cretized using a high resolution central difference scheme
(Kurganov & Tadmor, 2000; Vaithianathan et al., 2006;
Dallas et al., 2010). No artificial diffusion is applied.
For the three-dimensional (3D) simulations, (Lx,Ly,Lz) =
(10,2,5); these were chosen to match Samanta et al. (2013).
Typical resolution for the 3D runs at EIT is (Nx,Ny,Nz) =
(189,150,189). For the 2D runs at Re = 3000, Ny = 302
is used. For the linear analyses, the governing equations
are linearized around the laminar solution and Fourier-
transformed in x z, and t, are discretized in y with a Cheby-
shev pseudospectral method. Typically, about 200 Cheby-
shev polynomials are sufficient for the resolvent calcula-
tions, whereas as many as 400 are required for the TS eigen-
mode. The norm used in the resolvent calculations is con-
sistent with the non-Euclidean geometry of positive-definite
tensors (Hameduddin et al., 2019).

Nonlinear simulation results: Fig. 1 illustrates 3D
DNS results for scaled friction factor ( f − flam)/ flam
vs. Weissenberg number Wi at Re = 1500. Here, flam is the
value in laminar flow. At low but increasing Wi, the flow
is turbulent, with f decreasing, indicating that the drag is
reduced from the Newtonian value. In this regime, which
we denote NT, the turbulence displays a streamwise vortex
structure typical of Newtonian turbulence. With a further

(a)

(b)

(c)

(d)

Figure 2: (a) Snapshot of v′ (line contours) and α ′xx
(filled contours) from 3D nonlinear DNS at Re =
1500, Wi = 20, where ′ denotes fluctuations away
from the mean profile. (b) Phase-matched average
(kxLx/2π,kzLz/2π) = (2,0) structures from 3D DNS.
(c) Structure of the TS mode at Re = 1500,Wi = 20,
and the same wavenumbers as in (b). (d) Struc-
ture of the most strongly amplified resolvent mode at
Re = 1500,Wi = 20, the same wavenumbers as in (b),
and c = 0.37. In all plots, contour levels are symmet-
ric about zero. For v′ dashed - negative, solid - pos-
itive. For α ′xx black - negative, red - zero and yellow
- positive. Reproduced with permission from Shekar
et al. (2019).

increase in Wi, however, f − flam drops to zero – the flow
relaminarizes, as the NT regime loses existence. (At this
Re and all Wi considered here, the laminar state is linearly
stable.) At still higher Wi, the flow, if seeded with a suffi-
ciently energetic initial condition, becomes turbulent again,
with a very low value of f − flam (consistent with experi-
mental observations of Choueiri et al. (2018) in pipe flow)
and a very different structure: i.e. a new kind of turbulence
comes into existence. In this regime the flow structure cor-
responds to EIT as described by Samanta et al. (2013) and
Sid et al. (2018); we further analyze this structure below.

We now focus on the flow structure in the EIT regime.
The inset in Fig. 1 shows a spatial spectrum of the wall
normal velocity at y = 0 (the channel centerplane), i.e.,
|v(kx,0,kz)|. The centerplane is chosen because it yields
the cleanest spectra. In the EIT regime, there is very strong
spectral content when kz = 0, indicating the importance of
2D mechanisms in the dynamics. Indeed, Sid et al. (2018)
reports that EIT can arise in 2D simulations. Figure 2a
shows a slice at z = 2.5 of the fluctuating wall normal ve-
locity, v′, and fluctuating xx-component of the polymer con-
formation tensor, α ′xx. Observe that α ′xx is strongly local-
ized near y = ±0.7− 0.8. While tilted sheets of polymer
stretch fluctuations have already been noted as characteris-
tic of EIT (Samanta et al., 2013), the strong localization has
not been previously observed, perhaps because prior results
have been at higher Re and Wi, i.e. further from the point at
which EIT comes into existence. Fig. 2b shows the domi-
nant (kxLx/2π,kzLz/2π)= (2,0) component of the Wi= 20
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Figure 3: Eigenvalue spectrum for
(kxLx/2π,kzLz/2π) = (2,0) with Wi = 20 and
Re = 1500. The eigenvalue labeled ‘TS’ corresponds
to the TS mode. (b) Leading singular value of the
resolvent operator for Wi = 0 and Wi = 20, plotted
on a logarithmic scale. Reproduced with permission
from Shekar et al. (2019).

results, phase-matched and averaged over many snapshots.
Results for higher kx are very similar, exhibiting strong lo-
calization of stress fluctuations in the same narrow bands.

Linear analyses: To shed light on the origin of the
highly localized large stress fluctuations, we now con-
sider the evolution of infinitesimal perturbations to the
laminar state with given wavenumbers kx,kz. Two ap-
proaches are used. The first is classical linear stabil-
ity analysis, in which solutions of the form φ̂(x,y,z, t) =
φ(y)exp [i(kxx+ kzz− kxct)] are sought, resulting in an
eigenvalue problem for the complex wavespeed c. The ˆ in-
dicates deviation from the laminar state – for the linear anal-
yses described here, ˆ and ′ are synonymous. If all ci < 0,
the flow is linearly stable. The second approach is to de-
termine the linear response of the laminar flow to external
forcing with given frequency ω using the resolvent operator
(frequency-space transfer function) of the linearized equa-
tions (Schmid, 2007; McKeon & Sharma, 2010). In both
analyses, the concept of critical layers, i.e., wall-normal po-
sitions where the fluid velocity equals the wavespeed of an
eigenmode or resolvent mode, is important. While some re-
cent studies suggest the importance of critical-layer mecha-
nisms in viscoelastic shear flows (Page & Zaki, 2015; Lee &
Zaki, 2017; Haward et al., 2018; Hameduddin et al., 2019),
they do not make as direct a connection to EIT as we illus-
trate here.

Figure 3a shows the result of linear stability analysis
(the eigenvalues c) for Wi = 20, kxLx/2π = 2, kz = 0, the
wavenumber corresponding to the dominant structures ob-
served in the nonlinear simulations. All eigenvalues have
ci < 0 – the laminar flow is linearly stable.

Of note is the mode labeled ‘TS’, the viscoelastic
continuation of the classical Tollmien-Schlichting mode
(Drazin & Reid, 2004). Viscoelasticity has only a weak ef-
fect on the TS eigenvalue, which changes from c = 0.362−

0.019i to c = 0.368− 0.022i between Wi = 0 and Wi = 20
(Zhang et al., 2013). Despite the small change in c, the con-
formation tensor disturbance depends very strongly on Wi;
the peak value of α ′xx grows from zero at Wi = 0 to about
105 times the peak value of u′ at Wi = 20.

The structure of this eigenmode is shown for Wi = 20
in Fig. 2c. In the Newtonian case, the disturbance veloc-
ity field is a train of spanwise-oriented vortices that span
the entire channel; this structure is only weakly modified
even at high Wi. The polymer stress disturbance behaves
very differently: at Wi = 20 it consists of highly inclined
sheets that are extremely localized around the critical layers
y = ±0.79 for the TS wavespeed of cr ≈ 0.37. Compari-
son with Figs. 2a and 2b shows a strong similarity between
the eigenmode and the tilted sheetlike structures that are
the hallmark of EIT, with the resemblance between the TS
mode and the (kxLx/2π,kzLz/2π) = (2,0) structure from
the DNS in Fig. 2b being particularly striking. Specifically,
note that for the TS mode, Fig. 2c, v′ and α ′xx are even and
odd, respectively, with respect to y = 0, while in Fig. 2b
and the corresponding results at higher wavenumbers, these
symmetries hold to a good approximation.

Despite the fact that the TS mode ultimately de-
cays, short-time disturbance growth or amplification of
harmonic-in-time disturbances significant enough to trig-
ger nonlinear effects is still possible (Schmid, 2007). We
quantify this amplification by computing the largest singu-
lar value σ1 of the resolvent operator. Figure 3b shows re-
sults for Wi = 0 and Wi = 20 in the same range of (real)
wavespeeds c = ω/kx depicted in Figure 3a. The ampli-
fication increases dramatically with Wi, with the values at
Wi = 20 being ∼102 times those for Wi = 0; this is consis-
tent with the drastic increase in the conformation tensor dis-
turbance amplitude already discussed for the TS mode. In
both cases, the maximum amplification occurs for c≈ 0.37,
which coincides with the wavespeed for the TS mode, in-
dicating that the amplification is primarily normal in char-
acter, i.e., the large resolvent norm is primarily due to
the close proximity of the TS eigenvalue to the real axis.
The most-amplified disturbance is therefore expected to be
closely linked to the TS wave. Figure 2d, which shows
that the leading resolvent mode is almost identical to the
TS eigenmode in Figure 2c, confirms that this is indeed the
case. This result provides additional strong evidence that
the structures observed in EIT are closely related to those in
viscoelasticity-modified TS waves.

Self-sustained viscoelastic Tollmien-Schlichting
waves: The strong peak in the EIT spectrum seen in Fig-
ure 1 corresponds to a wavelength of 5, so here we report
computations of self-sustained nonlinear TS waves in a 2D
domain with this length. In Newtonian flow, the solution
family exists at this wavelength down to Re≈ 2800 and the
upper branch solution is linearly stable and thus easily com-
puted via DNS (Jiménez, 1990; Mellibovsky & Meseguer,
2015; Herbert, 1979). We continue the Newtonian solution
at Re = 3000 to the parameters of interest (β = 0.97 and
b = 6400) at Wi = 0.1, then increase Wi to study the ef-
fect of viscoelasticity. Hameduddin et al. (2019) have also
computed nonlinear viscoelastic TS waves in the regime
Re> 5772 and noted the role the critical layer plays in poly-
mer stretching at high Wi, but have not reported the obser-
vations described below.

On increasing Wi, the self-sustained nonlinear vis-
coelastic TS wave at Re = 3000 develops sheets of high
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polymer stretch resembling near wall structures seen at EIT.
This structure originates in the nonlinear Kelvin cat’s eye
kinematics of TS waves at finite amplitude, as detailed in
Shekar et al. (2019). At the parameters chosen, the solution
branch originating in the self-sustained Newtonian TS wave
bifurcates to a periodic orbit at Wi ≈ 3.5 (cf. Lee & Zaki
(2017)) before turning back into a traveling wave and los-
ing existence beyond Wi = 3.875. While we cannot show
this definitively, the likely bifurcation scenario is that the
solution branch turns around in a saddle-node bifurcation,
yielding a lower branch TS wave solution that becomes the
Newtonian solution as Wi→ 0. This scenario is shown on
Fig. 4.

Fig. 4(a) also shows the EIT solution branch, which
loses existence at finite amplitude when Wi . 13. The bi-
furcation underlying this transition is presumably also of
saddle-node form. Using EIT at Wi = 13 as an initial con-
dition for a run at Wi = 12, EIT persists transiently for hun-
dreds of time units before eventually decaying, not to the
laminar state, but to a very weak nontrivial flow, which
we henceforth call the “lower branch attractor” (LBA). We
elaborate on this attractor below. Figure 5a shows the evo-
lution of the mean wall shear rate during the decay process.
The mean wall shear rate displays a substantial drop be-
tween t = 200 and t = 500 during which the top half of the
channel decays away. Figure 5b is a snapshot at t = 200, just
before this drop. Strong striations of polymer stretch typi-
cal of EIT make up this structure. At later times, the bottom
half of the channel sustains the dynamics for a few hundred
time units. Figure 5c is a snapshot at t = 1000 during this
“quasi-EIT” phase. Strong striations can be clearly seen in
the bottom half which remain absent from the top half dur-
ing this phase. There is no special preference to either half
of the channel and for other starting initial conditions, the
bottom can be seen to decay first.

As time increases further, the structure continues to de-
cay, as shown in Fig. 5d at t = 1540, but does not ultimately
reach the laminar state. Instead, as shown in Fig. 5e at
t = 2000, it evolves to a state with very weak stress fluctua-
tions localized around y≈±0.82, which we call the “lower
branch attractor” (LBA). This state, while weakly chaotic,
strongly resembles the linear TS mode at these parameters,
as we now further illustrate.

Lower branch attractor: To elaborate on the relation-
shship between the LBA and the linear TS mode, we now
describe 2D simulation results at Re = 3000,Wi = 13,Lx =
5, i.e. close to the point where the 2D EIT branch first
comes into existence as shown in the bifurcation diagram
(Figure 4). Figure 6 shows the evolution of the L2-norm of
α̂xx starting from an initial condition consisting of the lam-
inar state plus some amplitude ε of the linear TS mode for
this parameter set. Here, ˆ denotes fluctuations from the
laminar state. For weak perturbations (ε = 1, which corre-
sponds to magnitudes shown in figure 7a), the expected de-
cay to the laminar state is observed (the laminar state is lin-
early stable). However, for larger perturbations where non-
linear mechanisms start to play a role, the solution evolves
to the LBA. For comparison, the dashed line shows the lin-
earized evolution starting from the same initial conditions,
which decays to laminar, thus highlighting the role of non-
linearity in the transition to the LBA. This state is robust:
initial perturbation amplitudes over a wide range will evolve
to it, as shown in Figure 6. Initial conditions with very large
magnitudes (ε = 6000) evolve to EIT: both EIT and LBA are

Figure 4: (a) Bifurcation diagram showing the evolu-
tion of the mean wall shear rate with Wi for the 2D
nonlinear TSW and EIT branches at Re = 3000,Lx =
5. (b) Bifurcation diagram of the L2-norm of α̂xx with
Wi for the LBA. Light red corresponds to the hypoth-
esized part of the LBA, indicating loss of existence
between Wi = 55 and 60. Dashed curves are hypoth-
esized unstable solution branches that are consistent
with the DNS data and principles of bifurcation the-
ory. The asterisks on the plots indicate that the con-
tinuation of the branch from one plot to the other.

stable states at the chosen parameters.
Resolution tests were performed to ensure satisfac-

tory convergence of statistics for the LBA. A resolution of
(Nx,Ny) = (79,302) is used for the following results.

Figure 7a shows the linear TS mode structure at these
parameters. Figure 7b is a snapshot showing the typical
fluctuation structure of the LBA. The bulk structure of the
LBA has sheets of α̂xx highly localized near y = ±0.82
and wall normal velocity contours across the entire chan-
nel. This bears strong resemblance to the TS mode shown
in figure 7a, which also displays a critical layer structure
localized at y = ±0.82. The LBA is thus a weakly non-
linear self-sustaining state whose primary structure is the
viscoelastic TS mode. In this state, the velocity fluctuations
are very weak, and the mean wall shear rate displays a neg-
ligible change from laminar. This can be understood on the
grounds that changes of the mean wall shear rate correspond
to fluctuations with kx = 0, which arise only due to nonlin-
ear interactions. Since the primary structure is very weak,
the nonlinear effects will be even weaker.

To briefly illustrate nonlinear effects, Figures 7c and
7d, respectively, show the kxLx/2π = 1,2, Fourier compo-
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Figure 5: (a) Wall shear rate vs time for Re =
3000,Wi = 12 starting from initial condition at EIT
at Wi = 13. (b), (c), (d), (e) snapshots at instants in-
dicated by the red lines at t = 200, 1000, 1540 and
2000 respectively. Shown are contour lines of wall
normal velocity v̂ superimposed on color contours of
α̂xx whereˆdenotes deviations from the laminar state.
For v̂, dashed = negative and solid = positive.

nents of the snapshot shown in 7b. It is clear to see from
Figure 7c the resemblance to the TS mode. At kxLx/2π = 2
polymer fluctuations localized near the wall in the region
y = ±0.6−0.8 can be observed in Figure 7d, with this ob-
servation holding as well for higher wavenumbers. Unlike
the TS mode, these higher wavenumber modes may instan-
taneously generate velocity fields primarily localized to one
half of the channel.

Having established the structure of the flow on the LBA
branch, we now illustrate the bifurcation scenario of this so-
lution branch by continuing in Wi. The LBA branch loses

Figure 6: L2-norm of α̂xx for Re = 3000,Wi = 13,Lx =
5, starting from an initial condition of laminar state +
ε× TS-mode. Dashed lines correspond to linearized
runs starting from the same initial conditions for ε =
10 and 100.

existence at finite amplitude (i.e. in a saddle-node bifurca-
tion) for Wi . 6, as we have confirmed both by using the
Wi = 6 solution as an initial conditions for simulations at
lower Wi and by running simulations starting from the lami-
nar state at a given Wi perturbed by the TS mode with small
ε . For Wi < 6 all these initial conditions decay to lami-
nar. On increasing Wi, the LBA loses existence between
Wi = 55 and Wi = 60, again presumably in a saddle-node
bifurcation, and initial conditions that land on the LBA for
Wi = 55 evolve to EIT. These observations suggest that the
LBA turns around and forms an unstable branch that joins
up with the unstable lower branch of EIT. Due to the small
amplitude of the LBA branch, the bifurcation scenario as-
sociated with it is shown separately in Figure 4b, using the
L2 norm of α̂xx as the amplitude measure. The unresolved
regime between Wi = 55 and Wi = 60 where the LBA loses
existence is shown in light red. The hypothesized unsta-
ble branch connecting LBA and EIT is shown schematically
with dashed lines on the bifurcation diagrams and the aster-
isks indicate how they are connected in moving from Figure
4a to Figure 4b.

Conclusions
Elastoinertial turbulence at low Re has strongly lo-

calized stress fluctuations, suggesting the importance of
critical-layer mechanisms in its origin. These fluctuations
strongly resemble the most slowly decaying structures from
linear stability analysis, as well as the most strongly am-
plified disturbances as determined by resolvent analysis of
the linearized equations. Finally, using as an initial con-
dition the laminar state plus a small amplitude Tollmien-
Schlichting perturbation, we find a stable small-amplitude
self-sustaining nonlinear state, the “lower branch attractor”.
This state has structure that very closely resembles the vis-
coelastic TS mode. and appears to be directly connected to
EIT in parameter space. Taken together, these results sug-
gest that, at least in the parameter range considered here,
the bypass transition leading to EIT is mediated by nonlin-
ear amplification and self-sustenance of perturbations that
generate TS-wave-like flow structures.
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Figure 7: (a) Structure of the TS mode at Re =
3000,Wi = 13,Lx = 5. Magnitude of the eigenmode
is arbitrary and values shown here correspond to ε = 1
perturbation. (b) Snapshot of the fluctuation structure
of the LBA at Re = 3000,Wi = 13. (c) and (d) are the
kxLx/2π = 1,2 components respectively, of the snap-
shot shown in (b). Shown are contour lines of v̂ su-
perimposed on color contours of α̂xx. For v̂, dashed =
negative and solid = positive.
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