
11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11)
Southampton, UK, July 30 to August 2, 2019

A PRIORI INVESTIGATIONS INTO THE CONSTRUCTION AND THE
PERFORMANCE OF AN EXPLICIT ALGEBRAIC SUBGRID-SCALE

STRESS MODEL

A. K. Gnanasundaram, T. Pestana and S. Hickel
Faculty of Aerospace Engineering

Delft University of Technology
Kluyverweg 1, 2629HS Delft, The Netherlands

s.hickel@tudelft.nl

ABSTRACT
We investigate the underlying assumptions of Explicit

Algebraic Subgrid-Scale Models (EASSMs) for Large-
Eddy Simulations (LESs) through an a priori analysis us-
ing data from Direct Numerical Simulations (DNSs) of ho-
mogeneous isotropic and homogeneous rotating turbulence.
We focus on the performance of three models: the dynamic
Smagorinsky (DSM) and the standard and dynamic explicit
algebraic models as in Marstorp et al. (2009), here refereed
to as SEA and DEA. By comparing correlation coefficients,
we show that the subgrid scale (SGS) stress tensor is bet-
ter captured by the EA models. Overall, the DEA leads
to the best performance, which is evidenced by comparing
how each model reproduces the probability density func-
tion (p.d.f.) of the SGS kinetic energy production. Next, we
evaluate the approximations that are inherent to EA models
such as the model for the pressure-strain correlation. We an-
alyze the performance of three pressure-strain models com-
monly employed in the RANS framework: the LRR-QI, the
LRR-IP, and the SSG models. Again, through correlation
coefficients, and by splitting the pressure contributions into
slow and rapid, we assess the relative performance of each
model. Finally, we test the local equilibrium assumption
of Marstorp et al. (2009), which considers a local balance
between the SGS kinetic energy production and the dissipa-
tion. The probability density function shows that the ratio of
SGS kinetic energy production to dissipation is distributed
over a broad range of values and that the local equilibrium
assumption can be only viewed as a mathematical simplifi-
cation.

INTRODUCTION
Choosing the right subgrid-scale (SGS) turbulence

model for Large-Eddy Simulations (LES) is not a trivial
task. On one hand, simpler mathematical models are pre-
ferred as these tend to be computationally efficient and eas-
ier to implement. On the other hand, sophisticated mod-
els might be able to capture the complex physics of tur-
bulent flows on coarser meshes. Recently, Explicit Alge-
braic (EA) Subgrid-scale stress models (EASSMs) has ap-
peared as a promising class of models for LESs. In gen-
eral, EASSMs constitute a framework from which various
LES models can be derived, from simple linear to more
complex non-linear ones, such as the anisotropy resolving
EA models of Marstorp et al. (2009). Similarly to other

LES models, EASSMs are based on bridging concepts that
were initially proposed in the context of Reynolds-Averaged
Navier-Stokes (RANS). Although these concepts are not al-
ways translatable to LESs, they are still assumed to hold and
are used to derive new models. Therefore, the question of
whether these assumptions remain valid within the context
of LESs arises.

The starting point for the derivation of EASSMs is the
evolution equation for the subgrid-scale (SGS) stress tensor.
Apart from the material derivative of the SGS stress ten-
sor, this equation involves 4 other terms: turbulence trans-
port, turbulence production, pressure-strain correlation and
dissipation. The basic idea is to simplify the non-closed
terms and eventually find an algebraic expression for the
SGS stress tensor. To this end, the first step is the weak
equilibrium assumption proposed by Rodi (1972) within the
context of RANS. This removes the temporal evolution of
the subgrid stress tensor and allow us to transform the pre-
vious evolution equation into an algebraic equation. Then,
the substitution of a model for the pressure-strain correla-
tion and the dissipation leads to an implicit and non-linear
relation for the SGS stress tensor.

Following the steps outlined above, Marstorp et al.
(2009) formulated EASSMs for LES. In their derivation, a
modified version of the linear LRR-QI model of (Launder
et al., 1975) is used to replace the pressure-strain term. To
avoid the non-linearity in the final expression for the SGS
stress tensor, Marstorp et al. (2009) invoked the local equi-
librium assumption, which considers that the SGS energy
production P equals the SGS dissipation ε everywhere in
the domain. Two variations of the model were proposed: a
dynamic and a non-dynamic. While from the standpoint of
model simplicity and computational efficiency, the model-
ing strategy considered by Marstorp et al. (2009) is well-
grounded, the validity of the local equilibrium assumption
remains unverified even for canonical cases of homoge-
neous turbulence. As for the modeling of the pressure-strain
term, the need for non-linear representation has been sub-
ject of research in RANS, see Townsend (1954), Lumley
(1979) and Speziale et al. (1992). in LES, however, sim-
ilar investigations have not yet been performed. A typical
approach to understand the potential and limitations of LES
models consists of examining the validity of their underly-
ing assumptions with the help of Direct Numerical Simula-
tions (DNS).

In this study, we use DNS data from homogeneous
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isotropic and rotating turbulence to an a priori study.
First we show comparisons of EASSMs with the dynamic
Smagorinsky model (DSM) and then, we investigate two
important building blocks of the models: (i) the model-
ing of the pressure-strain term in the SGS stress evolution
equation, and (ii) the assumption that the SGS kinetic en-
ergy production and dissipation are in local balance, i.e.,
P/ε = 1. Statistical tools such as correlation coefficients are
used to asses the overall performance of the models and the
success of the linear and the non-linear pressure strain mod-
els. To bring attention to the variability of P/ε , probability
density functions (p.d.f.) are employed.

METHODOLOGY
The starting point is the DNS data for 3 homogeneous

flow cases, which are obtained by solving the incompress-
ible Navier-Stokes equations in a triple-periodic cube of
sides L = 2π:

∇⋅ u⃗ = 0 (1)

∂ u⃗
∂ t

+ u⃗ ⋅∇u⃗+2β⃗ × u⃗ = −∇p+ν∇2u⃗+ f⃗ . (2)

Here u⃗ represents the velocity field, p is the pressure to
which density has been incorporated and ν is the kinematic
viscosity of the fluid. The term f⃗ on the right-hand-side
(r.h.s.) of Eq. (2) is an external force that drives the flow
and follows from Alvelius (1999). Its spectrum is Gaus-
sian and is centered around the forcing wave number k f
such that k f /k0 = 4, where k0 is the lowest wave number.
The governing equations are solved by a dealised pseudo-
spectral method (3/2-rule) with aid of fast Fourier trans-
forms (Pekurovsky (2012)). Time integration is achieved
by a low-storage third-order Runge-Kutta scheme in com-
bination with the integrating factor technique of Rogallo
(1977). Starting from a zero-velocity field, Eq. (2) is inte-
grated in time until a steady-state is reached, during which
flow statistics are collected. More details about the numer-
ical simulations can be found in Pestana & Hickel (2019).
The isotropic flow is characterized by a Taylor micro-scale
Reynolds number Reλ = u′λ/ν ≈ 230, where u′ is the r.m.s.
velocity and λ is the Taylor micro-scale. They serve here as
a reference in the a priori analysis and as initial condition
for the runs with rotation.

For the two additional homogeneous rotating turbu-
lence runs, we restart the isotropic simulations and impose
a system rotation β⃗ aligned with the 3rd direction, i.e.,
β⃗ = (0,0,β), where β is the rate of rotation. This requires
us to solve the governing equations in a rotating frame of
reference by accounting for the Coriolis force 2β⃗ × u⃗ in
Eq. (2). The runs with rotation are characterized by an ini-
tial micro-scale Rossby number Ro = u′/(2λβ) equal 0.6
and 0.45 and are hereafter referred to as weak and strong
rotation, respectively. They constitute an example of an
anisotropic flow, due to the modified dynamics rendered by
rotation.

In all runs, the number of degrees of freedom is Np =
5123. As reference, in the isotropic case, the resolution
is kmaxη ≈ 1.5, where kmax is the maximum resolved wave
number and η is the Kolmogorov length scale. From these
results, we arbitrarily selected velocity fields in the statis-
tical steady-state (isotropic run) or quasi steady-state (runs
with rotation) for the a priori analysis. To correctly rep-

resent single products, the velocity fields were first evalu-
ated on a grid with 2Np = 10243 points. Thus, all gradients
required for the a priori study were computed in spectral
space and products were evaluated in physical space like in
the pseudo-spectral method.

Definitions for the a priori analysis
The a priori analysis starts with filtering the DNS ve-

locity fields to obtain the filtered velocities ũi = ui − u′i .
Hereafter, the subscript indices denote vectorial and ten-
sorial components, summation over repeated indices is as-
sumed and [̃⋅] and [⋅]′ represent the filtered and the resid-
ual quantities, respectively. The filter is an isotropic box-
filter with cut-off wave number kc/k0 = π/∆ = 16, where ∆

is the cell width in physical space. With the filtered veloc-
ities at hand, the SGS stress tensor τi j = ũiu j − ũiũ j is con-
structed. The SGS stress tensor can be further decomposed
in its spherical and deviatoric part as τ

s
i j = (2ksgs/3)δi j and

τ
d
i j = τi j −τ

s
i j, respectively, where ksgs = τii/2 is the SGS ki-

netic energy and δi j is the Kronecker delta. We consider
three LES models: the dynamic Smagorinsky (DSM) and
the two EA models as introduced in Marstorp et al. (2009).
We refer to the EA models of Marstorp et al. (2009) as the
standard explicit algebraic model (SEA) and the dynamic
explicit algebraic model (DEA). In the following, we detail
how each of these models define τi j.

The DSM approximates the deviatoric SGS stress ten-
sor as τ

d
i j = CS∆

2(S̃i jS̃i j)1/2, where the constant CS is de-
termined dynamically as proposed by Lilly (1992) and S̃i j =
(ũi, j+ ũ j,i)/2 is the strain rate tensor. The SEA and the DEA
are based on a tensorial basis expansions (Pope (1975)), i.e.,
τi j = τ

s
i j +∑k=1,10 G(k)T k

i j, where T k
i j are 10 linearly inde-

pendent tensors formed from S̃i j and the rotation rate tensor
Ω̃i j = (ũi, j − ũ j,i)/2. The functional coefficients G(k) de-
pend on the invariants of S̃i j and Ω̃i j, and are determined
through an additional relation for τi j. This supplementary
equation for τi j is obtained from the time evolution equa-
tion of τi j, which is first simplified by the weak-equilibrium
assumption (Rodi, 1972) to yield

τi j

ksgs
(P −ε) =Pi j +Πi j −εi j. (3)

In Eq. (3), Pi j is the production tensor, Πi j is the pressure-
strain tensor, εi j is the dissipation tensor and P and ε are
half of the trace of Pi j and εi j. Among all these terms, only
Pi j is in a closed form. Hence, models must be provided for
Πi j, εi j and ksgs. Marstorp et al. (2009) take the dissipation
tensor as isotropic, i.e., εi j = (2ε/3)δi j, and Πi j, inspired
by RANS, is modeled with the LRR-QI of Launder et al.
(1975), but slightly modified:

Π
LRR−QI
i j =−CRεai j +C1ksgsS̃i j

+ 3
11

(2+3C2)ksgs(S̃ikak j +aikS̃k j −
2
3

S̃klaklδi j)

+ 1
11

(10−7C2)ksgs (Ω̃ikak j −aikΩ̃k j) , (4)

where ai j = τ
d
i j/ksgs is the normalized SGS stress tensor

anisotropy. The modification in Eq. (4) with respect to the
original LRR-QI model, stems from the constant C1, which
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Table 1: Correlation coefficients for P and ksgs with the DSM, the SEA and the DEA models for the three canonical
homogeneous cases of turbulence: isotropic, weak rotation and strong rotation.

Production (P) Sub-grid kinetic energy (ksgs)

Model iso weak strong iso weak strong

Dynamic Smagorinsky (DSM) 0.780 0.653 0.322 - - -

Non-dynamic EASSM (SEA) 0.640 0.490 0.196 0.367 0.429 0.380

Dynamic EASSM (DEA) 0.770 0.647 0.310 0.599 0.685 0.613

is taken as 3/5 instead of 4/5. The other constants are
CR = 1.5, C2 = 0.4. Next, Marstorp et al. (2009) consider
only the first two tensors in the T k

i j basis, i.e., T 1
i j = S̃i j and

T 2
i j = S̃ikΩ̃k j − Ω̃ikS̃k j. The functional coefficients G(1) and

G(2) are then determined by inserting the tensorial expan-
sion of τi j into Eq. (3), and by invoking the perfect equi-
librium assumption, i.e., P = ε , which removes the inherent
non-linearity of Eq. (3) due to the product of τi j and P in
the left-hand-side. The resulting explicit algebraic expres-
sion for τi j , for both SEA and DEA, is

τi j =
2
3

ksgsδi j +
k2

sgs

ε
G(1)S̃i j +

k3
sgs

ε2 G(2) (S̃ikΩ̃k j − Ω̃ikS̃k j) .
(5)

To complete the model, however, equations for ksgs and ε

must still be supplied. Marstorp et al. (2009) proposed solv-
ing for τ

∗ = ksgs/ε instead of solving for ε directly. The
SEA and the DEA differ on the way ksgs and τ

∗ are deter-
mined. While both models define a velocity scale based on
∆ and S̃i j , the DEA involves a constant of proportionality
that is determined dynamically. This affects the definitions
of G(1) and G(2), which are not shown but readily found in
Marstorp et al. (2009).

As we have seen above, a crucial step that shapes the fi-
nal form of τi j is the model for Πi j. Therefore, we also asses
the performance of three RANS pressure-strain models in
the framework of LES: the two linear models of Launder
et al. (1975), i.e., LRR-QI (Eq. (4) with C1 = 3/5) and LRR-
IP, and the non-linear SSG model (Speziale et al. (1991)):

Π
LRR−IP
i j =−CRεai j +

4
3

C2ksgsS̃i j

+C2ksgs(S̃ikak j +aikS̃k j −
2
3

S̃klalkδi j)

+C2ksgs (Ω̃ikak j −aikΩ̃k j) , (6)

where CR = 1.5 and C2 = 0.6, and

Π
SSG
i j = −(C1ε +C∗1P)ai j +C2ε (aikak j −

1
3

amnanmδi j)

+(C3−C∗3 II1/2
a )ksgsS̃i j +C4ksgs(S̃ikak j +aikS̃k j −

2
3

S̃klalkδi j)

+C5ksgs (Ω̃ikak j −aikΩ̃k j) . (7)

where C1 = 1.7, C∗1 = 0.9, C2 = 1.05, C3 = 0.8, C∗3 = 0.65,
C4 = 0.625 and C5 = 0.2. All three models are built by
combining assumptions for the different parts of the pres-
sure field, i.e., the slow part pslow and the rapid part prapid ,

which contribute differently to the pressure-strain term.
For instance, in Eqs. (4) and (6), −Crεai j constitutes a
model for the slow contribution, whereas the remaining
terms model the rapid part. In Eq. (7), the slow part is
modeled by −(C1ε +C∗1P)ai j. To evaluate the modeling
of each part individually, we decompose the pressure into
p = prapid + pslow, which are determined by splitting and
solving the Poisson equation:

∂
2 p

∂x2
i
= −

∂ ũiũ j

∂xi∂x j
−

∂ ũiu
′
j

∂xi∂x j
+

∂u′i ũ j

∂xi∂x j
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Rapid

−
∂u′iu

′
j

∂xi∂x j
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

Slow

. (8)

Then, we use prapid and pslow in the definition of Πi j to
obtain Π

slow
i j and Π

rapid
i j . These are later compared to their

respective models in Eqs. (4), (6) and (7).

CORRELATIONS FOR THE SUBGRID-SCALE
STRESS TENSOR

A common way to a priori compare different LES
models is to look at the correlation between the modeled
and the actual SGS stress tensor obtained from DNS. Nev-
ertheless, because in incompressible flows the spherical part
of the SGS stress tensor can be absorbed into the pressure
term, it is sufficient to contrast its deviatoric part only, i.e.,
τ

d
i j. In Fig. 1, we show the correlation between the actual

and the modeled τ
d
i j for the DSM, the SEA and the DEA.

By comparing the isotropic case in Figs. 1a and 1b,
we observe that the DSM and the SEA yield a correlation
coefficient of about 0.3 for all components of τ

d
i j . The cor-

relation increases further to roughly 0.5 when the DEA is
considered in Fig. 1c. We also see a higher correlation
level for the diagonal components of τ

d
i j . When rotation

is considered, however, correlations are lower than from the
isotropic case. In this scenario, the DSM delivers the poor-
est performance, and the correlation levels continue to drop
with increasing rotation. In fact, the case with strong rota-
tion is rather challenging, as the scales of motion influenced
by rotation include the subgrid-scales, i.e. κΩ > κc, where
κΩ is the wave number of Zeman (1994). The effects of
rotation are more pronounced in τ

d
12, for which the corre-

lation coefficient drops to around 0.2, see Figs. 1b and 1c.
On the other hand, in the case of SEA and the DEA, for
both weak and strong rotation, the τ

d
33 component shows a

higher correlation coefficient than in the non-rotating case.
We attribute this to the fact that rotation acts to destroy the
velocity gradients in the direction parallel to the rotation
axis, which can ultimately lead to a loss of dependency of
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Figure 1: Correlation coefficients for the normal and cross terms of the modeled and the actual deviatoric part of
the SGS stress tensor. Isotropic ( ); weak rotation ( ); strong rotation ( ).

the flow in this direction. Thus, the same filter width can
resolve a larger portion of the scales of motion in the di-
rection of rotation in comparison with the other directions.
This however, is not observed for the DSM, and the cor-
relation of all components deteriorates in the presence of
rotation.

CENTRAL ORDER MOMENTS OF SGS KI-
NETIC ENERGY PRODUCTION

Now let us turn to the modeling of P , which con-
trols the amount of energy that is drained from the resolved
scales, and therefore acts as a source term for ksgs.

The differences between the DSM, the SEA and the
DEA in modeling P comes from the prefactor of the strain
rate tensor in the model definition. Because P = −τi jS̃i j,
the SGS kinetic energy production depends directly on the
eddy viscosity for the DSM and on G(1)k2

sgs/ε in the case
of the SEA and DEA. Although two tensors are used to con-
struct the EA models (see Eq. (5)), only T 1

i j contributes to
P , because the inner product of T 2

i j and S̃i j is zero.
We find that, for the isotropic case, the correlation co-

efficient for P is above 0.75 for both dynamic models, see
Tab. 1. In contrast, the SEA delivers with 0.64 the lowest
correlation coefficient. This discrepancy between the SEA
and the DEA can be attributed to the poor modeling of ksgs,
as also seen in Tab. 1. Note that ksgs is not modeled by the
DSM and therefore not listed in Tab. 1.

Similar as observed for the correlations of τ
d
i j ), P

and ksgs become less correlated with the increase in rota-
tion. The effects of rotation on an initially homogeneous
isotropic flow is to suppress the enstrophy production. In
the end, this reduces the energy dissipation rate, which is
more relevant at the small scales. Therefore, the low cor-
relation levels for P found in Tab. 1 for the rotating cases
suggest that none of these models is able to capture the ef-
fects of rotation on the SGS dynamics. This statement is
based on the fact that P is the one responsible for transfer-
ring energy from the resolved to the subgrid-scales, where
it is later dissipated.

A more detailed comparison that provides information
regarding the distribution of P is obtained from its p.d.f.,

which is presented in Fig. 2. The DNS data for the three
different flow cases show that the p.d.f. is asymmetric and
includes positive and negative values. Although on average
P is positive, the negative values of P imply a local energy
transfer from the subgrid to the resolved scales — energy
backscatter. Note, however, that none of the models can
reproduce the local backscatter, as their formulation per se
do not allow negative values.

The effects of rotation are evident by comparing Fig. 2a
and Fig. 2c, for instance. Overall, we see that rotation fa-
vors an asymmetric p.d.f. The asymmetry is imprinted in
the skewness of P , for which we find a value of 3.841 in
the isotropic case, and 4.845 and 10.517 for the weak and
strong rotation cases, respectively. The p.d.f. also develops
heavier tails with increasing rotation rate, indicating that ex-
treme events, although unlikely, can occur. This is mea-
sured by the flatness of P , which varies from 29.867 for the
isotropic case to 59.951 (weak) and 598.288 (strong) for the
cases with rotation. As comparison, the skewness and the
flatness of the p.d.f. of P with the DEA are, respectively,
4.390 and 37.637 (isotropic), 4.475 and 39.690 (weak rota-
tion) and 9.331 and 170.720 (strong rotation). Figure 2 also
clarifies the difference in performance between models. In
the isotropic case, for instance, the positive values of P are
well captured by both the EA models, in contrast with the
results for the DSM. This can be intriguing at first because
we saw from Tab. 1 that the correlation of P for the DSM
and the DEA are of the same magnitude. However, it is im-
portant to note that correlation coefficients are unaffected
by scaling any of the fields with a positive constant. With
rotation (Fig. 2b and Fig. 2c), the p.d.f. of P is poorly cap-
tured and the DEA outperforms the SEA. Interestingly, for
the isotropic case the situation is reverse and a better match
for the p.d.f. is obtained with the SEA.

PRESSURE-STRAIN MODELS
Hereafter we let the DSM aside and focus on the

two EA models only, i.e., SEA and DEA. Through corre-
lations, we investigate the performance of three different
pressure-strain models and the local equilibrium assump-
tion, i.e., P/ε = 1. The correlation coefficient for the dif-
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Figure 2: Probability density function of the production term responsible for the inter-scale energy flux for case
isotropic (a), weak rotation (b) and strong rotation (c). ( ) represents the filtered DNS data, whereas the different
line types correspond to different LES models: DSM ( ), SEA ( ) and DEA ( ).

ferent pressure-strain models are shown in Fig. 3 for all the
three flow cases. In Fig. 3a, isotropic turbulence, the corre-
lation coefficient of all the components of Πi j are indistin-
guishable for the linear models (LRR-QI and LRR-IP). The
non-linear model (SSG) also behaves similarly and a corre-
lation coefficient of roughly 0.5 is found for all the models.
Regardless of the model, Figs. 3b and 3c show that rotation
leads to a lower degree of correlation. Nevertheless, the
loss in correlation occurs gradually and a correlation of 0.3
is still found for the weak rotating case. For the strong ro-
tating case, Fig. 3c shows that the correlation of the compo-
nents of the pressure-strain field becomes negative or even
uncorrelated. The largest deviation from the isotropic case
is observed for Π12. In general, however, we do not observe
substantial differences in the correlation levels between the
linear and the non-linear models. In Fig. 3, the trend of the
SSG model is similar to both LRR models.

As for the rapid and slow pressure-strain terms, i.e,
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Figure 3: Correlation coefficients of the modeled and
actual pressure-strain tensor: LRR-QI ( ), LRR-
IP ( ) and SSG ( ). Different panels corre-
sponds to the different flow cases: isotropic (a), weak
rotation (b) and strong rotation (c).

Π
rapid
i j and Π

slow
i j , the correlation coefficients are shown in

Fig. 4 for the isotropic and the strong rotating case. Results
for the isotropic case indicate that the rapid term is better
correlated to the actual DNS data than the slow term, and
that the correlation coefficients for Π

rapid
i j are twice as large

as for Π
slow
i j . Effects of rotation are also more pronounced in

the rapid terms. For all the pressure-strain models, we ob-
serve that the correlation coefficients approaches zero and
the different components of Π

rapid
i j behave similarly to Πi j

in Fig. 3c. Therefore, we attribute the poor performance of
the pressure-strain models observed in Fig. 3 mainly to the
modeling of Π

rapid
i j . Again, the performance of the LRR

and SSG models are similar.
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tation ( ). Symbols denote distinct pressure-strain
models: LRR-IP ( ), LRR-QI ( ) and SSG ( ).
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LOCAL EQUILIBRIUM ASSUMPTION
Now we turn our attention to the local equilibrium as-

sumption between SGS energy production and dissipation.
Figure 5 presents the p.d.f. of P/ε in order to test the va-
lidity of the assumption. We make two main observations.
First, as rotation increases, the p.d.f. develops heavier tails
similar to Fig. 2. Second, the ratio P/ε is distributed over a
broad range of values with mean, obtained after numerical
integration of the p.d.f., equals 0.91 (isotropic), 1.08 (weak)
and 0.96 (strong).

The practice to set P/ε = 1 avoids the non-linearity on
the l.h.s. of Eq. (3). In Marstorp et al. (2009), the au-
thors justify this choice based on a energy budget where
⟨P⟩ = ⟨ε⟩. (The symbol ⟨⋅⟩ represents box-averaged quan-
tities). While this is one possibility, another choice is to
fix P/ε in Eq. (3) to its mean value. Nevertheless, we
must bear in mind that ⟨P/ε⟩ is essentially different from
⟨P⟩/⟨ε⟩. Equation (3) is assumed to hold locally. There-
fore, if calibrated to a constant, the approximation should
be based on P/ε and not on P and ε individually. For ex-
ample, the maximum likelihood value, i.e., the peak of the
p.d.f. of P/ε , could be an estimate. However, this requires
prior knowledge of the p.d.f. of P/ε , which depends on the
flow type. For instance, in Fig. 5, the value of maximum
likelihood reduces monotonically with increasing rotation
from 0.17 (isotropic) to 0.1 (weak rotation) and 0.05 (strong
rotation).

CONCLUSIONS
We have evaluated the overall performance of

EASSMS and the validity of their main ingredients by
means of an a priori analysis using data from DNS. We
observed that the correlation coefficients of the actual and
modeled τi j are improved for both EA models with respect
to the DSM. Overall, a better match is found with the DEA.
The EA models also show better correlations for P , and it
was evident that they can reproduce the spatial distribution
of P significantly better than the DSM. In order to inves-
tigate the underlying assumptions of the EA models, two
building blocks of these models are assessed: the model-
ing of Πi j and the local equilibrium assumption. Regard-

ing the modeling of Πi j, we showed that the LRR-IP, the
LRR-QI and the SSG models record similar levels of cor-
relation regardless of the strength of rotation. Nevertheless,
a deterioration of the correlation level was observed for all
three models for increasing rotation rate. We also further
split the contributions of the pressure-strain correlation in
its rapid and slow parts. We saw that the main cause for a
loss in correlation stems from the modeling of Π

rapid
i j . With

respect to the local equilibrium assumption, the p.d.f. of
P/ε presents a clear evidence that P/ε is distributed over a
broad range of values. Moreover, the properties of the p.d.f
changes with rotation, indicating that assuming P/ε = 1 can
be only viewed as a simplification that offers simplicity in
the derivation of explicit relations for τi j.
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