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INTRODUCTION
Secondary flows are spontaneously-occurring large-

scale swirling motions normal to the direction of the mean
flow, i.e. the primary flow. Even though Nikuradse ob-
served secondary flow already in the 1930s in a turbu-
lent duct flow experiment with a non-circular cross-section,
the prediction of the behaviour of secondary motions re-
mains unclear. Since secondary motions often arise in flows
over heterogeneous surfaces, their better understanding is
of great interest for environmental processes such as atmo-
spheric flows over varying topography or engineering appli-
cations such as performance degradation due to deposits on
wind turbine blades and aircraft wings.

According to the classification by Prandtl (1952), sec-
ondary flows are divided into first and second kind. The
former occur in both laminar and turbulent flows, whereas
the latter arise only in turbulent flows. Secondary flows of
the Prandtl’s second kind are caused by Reynolds stress gra-
dients in non-axisymmetrical turbulent flows (Bradshaw,
1987), and their presence have been observed not only in
non-circular and open channels, but also in flows over het-
erogeneously rough surfaces (Hinze, 1973). Recently, con-
siderable efforts have been made in order to understand the
governing parameters for the generation of secondary flows
over surfaces with spanwise varying drag. These include
several experimental studies (Vanderwel & Ganapathisub-
ramani, 2015; Barros & Christensen, 2014) and numerical
investigations (Anderson et al., 2015; Stroh et al., 2016;
Chung et al., 2018; Vanderwel et al., 2019), in which vari-
ation of spanwise surface heterogeneity and arrangement is
considered. Thereby, the main focus has been on surfaces
consisting either of roughness stripes and ridges or imposed
wall shear stress modulation. In all previous cases the au-
thors reported a presence of large-scale vortical structures
at the edges between low and high wall shear stress re-
gions. For channel flows with streamwise aligned ridges
it has been shown that the secondary flows are particularly
pronounced at a spacing of around half the channel height,
δ , occupying large parts of the channel cross-section.

Regarding the origin of secondary motions, Hinze
(1973) hypothesized that the role of secondary flows is to
transport turbulent kinetic energy from areas of excess pro-
duction to areas of excess dissipation. These areas can have
different locations, depending on the properties of the in-
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Figure 1: Schematic view of the numerical domain
with streamwise elongated ridges.

troduced inhomogeneity. Hwang & Lee (2018), who stud-
ied turbulent kinetic energy budgets in turbulent boundary
layers with different secondary motions, elaborate further
Hinze’s conjectures and found that the rotational sense of
secondary flows is determined by the local strength of the
turbulent transport term.

In the present study we investigate the transport mech-
anisms of turbulent energy and different components of the
Reynolds stresses in presence of secondary flows by means
of the Reynolds stress budget equations. Secondary flows
are generated via streamwise-aligned ridges with a constant
element elevation and spanwise spacing, as shown in Fig-
ure 1.

METHODOLOGY
The analysis is carried out using flow fields produced

via Direct Numerical Simulation (DNS) of fully-developed
turbulent channel flows driven at a constant pressure gradi-
ent corresponding to the friction Reynolds number Reτ =
uτ δ/ν = 180. uτ =

√
τw/ρ is the friction velocity and τw

the average wall shear stress, while ν and ρ are respec-
tively the kinematic viscosity and the density of the fluid.
The simulations have been performed with the open-source
code Incompact3d, employing sixth-order compact finite-
differences for spatial discretization (Laizet & Lamballais,
2009; Laizet & Li, 2011). The governing equations are
advanced in time via an explicit low-storage, third-order
Runge-Kutta scheme. Continuity is imposed to machine
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Figure 2: a) Contour of the phase-averaged streamwise velocity in the cross-section. The black arrows indicate the
secondary motion normal to the main flow direction. b) Contour of the phase-averaged magnitude

√
V 2 +W 2 of

the secondary motion. All terms are normalized by the mean streamwise centerline velocity Ucl

Case Nx×Ny×Nz Lx×Ly×Lz ∆x+ ∆y+max ∆z+ Reτ Reb C f U+
b

smooth 256×129×128 8δ ×2δ ×4δ 5.6 7.90 5.63 180 5654 8.108 ·10−3 15.71

structured 256×257×384 8δ ×2δ ×4δ 5.6 3.95 1.88 180 5336 8.762 ·10−3 14.82

Table 1: Simulation parameters of the smooth and structured DNS case.

accuracy via fractional step method, in which the pressure
correction is obtained by solving the pressure Poisson equa-
tion in spectral space. Periodic boundary conditions are ap-
plied in streamwise (x) and spanwise (z) directions, while
the wall-normal (y) extension of the domain is bounded by
no-slip boundary conditions at the lower and upper domain
wall at y = 0 and y = 2δ , where δ is the half channel height.

The surface structuring in form of a periodic spanwise
array of streamwise-aligned ridges is introduced at both
channel walls in a symmetric arrangement via the direct-
forcing immersed boundary method proposed by Fadlun
et al. (2000). The ridges protrude H = 0.1δ above the walls
and have a spanwise width of W = 0.25δ . The constant
spacing between the centre of two ridges is S = 1.33δ .

The turbulent channel flow with streamwise aligned
ridges is compared with a smooth channel flow at the same
value of Reτ . The Cartesian grid of both simulations is
equidistant in the streamwise and spanwise direction and in
the wall-normal direction the grid points are distributed un-
evenly. For the structured simulation the wall-normal spac-
ing is arranged in such a way that the first grid point from
the wall is placed at y+ = 0.5, where the superscript + indi-
cates the non-dimensionalisation with wall units. Beside the
number of grid points, which has been reduced to Nx = 256,
Ny = 192 and Nz = 192 for the smooth channel simulation,
all other discretisation parameters are kept same between
the two simulations. The resulting flow properties and dis-
cretisation parameters are shown in table 1.

The velocity components in streamwise, wall-normal
and spanwise directions are respectively denoted u, v, w,
while p denotes pressure. Due to the periodic nature of
the ridges, the phase-averaging operator for the generic flow

quantity f is introduced

〈 f 〉(y,z) = 1
N

N

∑
n=1

∫
t

∫
x

f (x,y,z+nS, t) dt dx , (1)

while the respective Reynolds decomposition can be written
as f (x,y,z, t) = F(y,z) + f ′(x,y,z, t). Capital letters F =
〈 f 〉 are used to indicate averaged quantities. The top and
bottom half of the channel are averaged together exploiting
the given statistical symmetry. In the flat wall case, phase-
averaging along the spanwise direction reduces to standard
averaging.

We analyse the Reynolds stress
〈

u′iu
′
j

〉
budget equa-

tions, which read

V
∂ 〈u′iu′jv′〉

∂y
+W

∂ 〈u′iu′jw′〉
∂ z

= Ti j +Pi j +Πi j +Dν + εi j , (2)

where Ti j is the turbulent transport of the Reynolds stresses,
Pi j is the production, Πi j corresponds to the velocity-
pressure-gradient term, Dν is the viscous transport of
the Reynolds stresses and εi j is the viscous dissipation.
The velocity-pressure-gradient term Πi j of the Reynolds
stresses can be decomposed into the pressure strain term
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Πs
i j and the pressure transport term Πd

i j:

Π
d
i j =

1
ρ

(
∂ 〈u′j p′〉

∂xi
+

∂ 〈u′i p′〉
∂x j

)
, (3)

Π
s
i j =−

1
ρ

(
〈p′

∂u′j
∂xi
〉+ 〈p′ ∂u′i

∂x j
〉
)
. (4)

Taking the trace of eq. 2 yields the turbulent kinetic
energy k budget equation

V
∂k
∂y

+W
∂k
∂ z

= Pk− εk +Tk +Dk +Πk , (5)

in which the terms on the right hand side are defined as
follows:

Pk =−〈u′iu′j〉
∂Ui

∂x j
, εk = ν〈 ∂u′i

∂x j

∂u′i
∂x j
〉,

Tk =−
1
2

∂ 〈u′iu′iu′j〉
∂x j

, Πk =−
1
ρ

∂ 〈u′j p′〉
∂x j

,

Dk = ν
∂ 2k
∂x2

j
.

Pk is the production, εk the dissipation, Tk the turbulent
transport, Πk the pressure transport and Dk the viscous dif-
fusion of turbulent kinetic energy.

The ridges induce secondary motions visible as wall-
normal (V ) and spanwise (W ) mean velocity components,
which enable additional advection of Reynolds stresses (left
hand side of eq. 2 and 5) otherwise not present in smooth
channels. The spanwise inhomogeneity of the Reynolds
stresses is a feature of flows with secondary motions. In
the following the individual budget terms of the turbulent
kinetic energy and the Reynolds stress equation are exam-
ined in the channel cross-section.

RESULTS
The mean streamwise velocity U in the cross section is

presented in figure 2a for the channel with ridges. Arrows
indicate the wall-normal V and spanwise W velocity com-
ponents associated with the secondary motion, while the
streamwise-elongated ridge is represented via a grey con-
tour.

A clearly noticeable secondary flow occurs with large
wall-normal and spanwise extent, which reaches up to the
channel centreline. The upwash motion of slow fluid to-
wards the bulk can be seen above the ridge structure, while
a downwash of high velocity from the channel bulk to-
wards the walls takes place in the valley between the ridges.
The local magnitude of the secondary motion, defined as√

V 2 +W 2 is presented in figure 2b. The strength of the
secondary flow amounts 2.68% of the mean centreline ve-
locity. Even though the present Reynolds number is signif-
icantly lower, the strength of the secondary motions corre-
sponds to the values reported in previous studies at higher
Reynolds number (Vanderwel et al., 2019)

In order to improve the understanding of the role
played by he secondary motion in the transport of turbu-
lent stresses, the focus will lie in the following on the bud-
get terms of the turbulent kinetic energy and the Reynolds
stresses.

In figure 3a the contour of the turbulent kinetic energy
k is presented. There are two peaks in proximity of the cor-
ners of the ridge, which are related to the strong mean ve-
locity gradients introduced by the protruded surface. These
cause also a localised region of large production Pk (fig-
ure 3c). Furthermore, k exhibits a local maximum at the
center of the valley between two consecutive ridges, which
might be ascribed to the downwash caused by the secondary
flow, which pushes high velocity fluid to the wall at the val-
ley center.

The influence of turbulent transport Tk is visualised in
the cross-section of the channel in figure 3b. High lev-
els of Tk occur in the same spatial locations at which k
is large. Qualitatively Tk exhibits the same behavior ob-
served above flat channel walls: it withdraws energy from
the buffer layer, where maximum production occurs, and
deposits it in the vicinity of the wall and in the flow bulk.
However, there are some important differences related to
the presence of the ridges and the secondary motion. First,
the peak positive value of Tk occurs close to the ridge wall
where the advection of k associated with the secondary mo-
tion is also large. The large negative region of Tk with two
local peaks further away from the ridge results in a non-
negligible contribution to k present in the bulk region of the
flow. Hence, the production Pk and dissipation εk, the two
other main local contributors, are not in local equilibrium.

Figure 3c and 3d show Pk and εk respectively. As can
be seen, the value of εk is particularly pronounced at the
corners of the ridge with two strong peaks. The production
Pk also shows two strong peaks, located slightly above the
ridge, within the buffer layer, featuring a larger extent. The
present results qualitatively agree with the boundary layer
investigation by Hwang & Lee (2018).

In order to see how strong the influence of the sec-
ondary motion remains further away from the ridges, the
budget terms of the turbulent kinetic energy at the center of
the valley are presented in figure 4. The results obtained
for the channel with ridges are compared with the smooth
wall case. The values of Pk and εk are lower than in the
plane channel flow throughout the whole channel height. It
is confirmed that the turbulent transport is reduced close to
the wall, but it plays a more dominant role for larger wall
distances y+ > 30, counteracting the effect of advection by
secondary motions (see also figure 3b).

Gradients of Reynolds stresses are known to act as a
source for the mean streamwise vorticity, thus contributing
to the formation of secondary motions (Bradshaw, 1987).
In order to understand how Reynolds stresses are produced
and transported throughout the channel, we focus in the fol-
lowing on the Reynolds stress budget equations. In figure 5a
and 5b the phase-averaged contours of the Reynolds stress
〈u′v′〉 and 〈v′w′〉 are presented. The maximum value of
−〈u′v′〉 is found above the ridge at the wall-normal position
y ≈ 0.4, while a second peak is found at the center of the
valley. The contour of 〈v′w′〉 shows two strong opposite-
signed peaks close at the corner of the ridge, reflecting the
opposite flow direction of the secondary flow. The maxi-
mum amplitude of 〈v′w′〉 is lower compared to 〈u′v′〉, but
the area of non-negligible 〈v′w′〉 largely extends throughout
the channel.

The source term P− ε + Πd , consisting of the pro-
duction, dissipation and pressure strain, of the Reynolds
stresses 〈u′v′〉 and 〈v′w′〉 are shown in figure 5c and 5d.
Neither the contour of the source of 〈u′v′〉 nor the con-
tour of the source of 〈v′w′〉 corresponds to the respective
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Figure 3: a) Contour of the phase-averaged turbulent kinetic energy in the cross-section. b) Contour of the turbulent
transport of the turbulent kinetic energy Tk . c) Contour of the turbulent kinetic energy production Pk. d) Contour
of the dissipation of turbulent kinetic energy εk. All budget terms are normalized by u4

τ/ν .
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Figure 4: Budget terms of the phased-averaged turbulent kinetic energy k in wall coordinates at the valley center be-
tween two ridges normalized by u4

τ/ν . Solid lines indicate the budget terms of the simulation with imposed ridges,
while dashed lines indicate the budget terms of the plane channel simulation. The color of the lines representing:
advection term ; production term Pk, ; turbulent transport Tk, ; pressure transport Πk, ; viscous diffusion
Dk, ; dissipation −εk, .
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Figure 5: Contours of the phase-averaged Reynolds stresses for a) 〈u′v′〉 and c) 〈v′w′〉. Contour of the phase-
averaged difference between the budget terms of production, dissipation and pressure strain for b) P12− ε12 +Πs

12
and d) P23− ε23 +Πs

23. All budget terms are normalized by u4
τ/ν .

Reynolds stress counterpart, which indicates a strong in-
fluence of transport processes. While the source of 〈u′v′〉
shows a qualitatively similar behaviour to a smooth channel
at the center of the valley, it is opposite above the ridge with
a strong production (negative peak) occurring in the vicinity
of the wall. This converse behaviour is related to the com-
plex composition of the 〈u′v′〉-production and might origi-
nate from the locally strong spanwise mean velocity gradi-
ents.

The source term for 〈v′w′〉 depicts a more complex pat-
tern. Maximum positive and negative values of the source
are found close to the corner of the ridge. The positive
contour extends upwards to the channel center with a pro-
nounced lateral drift to the sides at around y = 0.2. From
the highly negative values at the corner, the distribution of
the 〈v′w′〉-source spreads laterally and encloses a small area
of positive source, which flanks the ridges.

CONCLUSION & OUTLOOK
The current study investigates the production, trans-

port, dissipation and advection of turbulent kinetic energy
and Reynolds stresses in a turbulent channel with secondary
flows induced by spanwise heterogeneous structured sur-
faces. The redistribution of Reynolds stresses related to the
secondary motions significantly impacts the Reynolds stress
budgets compared to a smooth channel flow. In particular,
it has been observed that production and dissipation of tur-
bulent kinetic energy deviate further from local equilibrium

due to enhanced turbulent transport.
Further investigations will focus on the spectral analy-

sis of the different budget terms, in order to better under-
stand the scale-dependent contribution. Of particular in-
terest is the turbulent transport term, which has the poten-
tial to highlight the nonlinear interaction of different scales
and its contribution to the transfer between large and small
structures. This might shed light on the turbulence modifi-
cation caused by surface inhomogeneity and its relation to
secondary motions.
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