
11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11)
Southampton, UK, July 30 to August 2, 2019

ACCURACY CONTROL FOR LARGE-EDDY SIMULATION OF
TURBULENT MIXING - INTEGRAL LENGTH-SCALE APPROACH

B.J. Geurts1,2∗, A. Rouhi3,4 and U. Piomelli3
1: Multiscale Modeling and Simulation, Faculty EEMCS, University of Twente,

P.O. Box 517, 7500 AE Enschede, The Netherlands
2: Multiscale Physics of Energy Systems, Center for Computational Energy Research,

Faculty of Applied Physics, Eindhoven University of Technology, P.O. Box 213,
5600 MB Eindhoven, The Netherlands

3: Department of Mechanical and Materials Engineering, Queen’s University,
Kingston (Ontario) K7L 4L9, Canada

4: Department of Mechanical Engineering, University of Melbourne, Victoria 3010, Australia
∗Correspondent author: b.j.geurts@utwente.nl

ABSTRACT
Turbulent flow at high Reynolds numbers is currently

not accessible on the basis of direct numerical simulation
(DNS) of the Navier-Stokes equations - the computational
complexity is too high to allow DNS in most realistic flow
conditions. Instead, Large-Eddy Simulation (LES) offers
an alternative in which the focus is on capturing the larger
dynamic scales of a problem. However, the fundamental
closure problem in LES induced by spatial filtering of non-
linear terms, and the role of discretization errors in the nu-
merical treatment of the LES equations, induce a princi-
pal uncertainty in any LES prediction. This uncertainty re-
quires quantification and control. We investigate error con-
trol capabilities of the Integral Length-Scale Approximation
(ILSA) and apply this modeling to transitional and turbu-
lent mixing, focussing on the achieved reliability of LES as
function of the grid resolution and ‘sub-filter activity’.

INTRODUCTION
Rigorous and rational methods for the computational

modeling of turbulent flow at high Reynolds numbers
include direct numerical simulation (DNS) and Large-
Eddy Simulation (LES). These approaches have different
strengths and limitations and can find successful applica-
tion in a number of flow problems. LES arises from spa-
tial filtering of the Navier- Stokes equations. In this ap-
proach, an externally specified length-scale, the so-called
‘filterwidth’ ∆, is introduced, giving some control over the
range of dynamical features that are included in the com-
putational model. The spatial filtering potentially simplifies
the dynamics, but it also gives rise to a fundamental clo-
sure problem in LES, forcing the introduction of a particular
sub-filter scale model to represent the effects of the motions
on scales smaller than ∆. In addition, the numerical treat-
ment of the LES equations, to which a specific sub-filter
model is added, introduces discretization errors that may
influence the behavior of the resolved scales. Together, the
sub-filter modeling and the discretization induce a princi-
pal uncertainty in LES that requires quantification and con-
trol. We consider the Integral Length-Scale Approximation
(ILSA) (Piomelli et al. (2015); Rouhi et al. (2016)). Pre-

viously, ILSA was applied successfully to homogeneous
isotropic turbulence, turbulent channel flow, flow over a
backward-facing step, in a separating boundary layer (Wu &
Piomelli (2018)), a sphere, and the Ahmed body (Lehmkuhl
et al. (2019)). In this contribution we include transitional as
well fully developed turbulent flow and focus on turbulent
mixing in a temporal mixing layer model (Vreman et al.
(1997)). Modeling and discretization errors can to some ex-
tent be controlled in the ILSA framework - we illustrate this
here.

Large-eddy simulation (LES) of turbulent flow has a
long and rich history in which already during the 1960s first
parameterizations, such as Smagorinsky’s eddy-viscosity
model Smagorinsky (1963) were proposed to capture the ef-
fects of localized turbulent motions on the large scales. The
coarsening length-scale of choice was the mesh-size, often
chosen as the cube-root of the volume of a grid cell Schu-
mann (1975). However, the grid is often defined prior to
any flow simulation and a direct, quantitative link between
the grid-based length-scale and the actual local flow is not
made. Moreover, while coarsening is helpful in reducing
the computational effort, it also introduces uncertainty re-
garding the accuracy of the achieved results (Pope (2000);
Geurts (2003)). We adopt the recent ILSA (Integral Length-
Scale Approximation) proposal which is a first framework
that can address LES error control systematically (Piomelli
et al. (2015); Rouhi et al. (2016); Geurts et al. (2019)).

In this contribution we systematically look into the
level of total error control achievable in turbulent mixing.
The basic limitation in LES quality stems from an interplay
between effects of discretization and modeling errors. A
key concept in error control for LES is ‘sub-filter activity’
(Geurts & Fröhlich (2002)). The error behavior in LES has
two simplifying limits. First, at low sub-filter activity the
LES model contribution is small and fine grid resolution
(proper for DNS) is required to remove the discretization
error. The cost of such an academic limit may be unrealis-
tic. Second, at high sub-filter activity (significant coarsen-
ing of the turbulent flow), one gains control over the com-
putational cost, but looses direct influence on the achievable
accuracy. In fact, a systematic error associated with the
adopted sub-filter model is inherent in this limit. In prac-
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tice, one seeks an intermediate value for the sub-filter activ-
ity that yields the optimal accuracy at fixed computational
costs. We quantify the accuracy against filtered DNS and
study the relation between ‘achieved accuracy’ and ‘target
value for sub-filter activity’. Keeping the sub-filter activ-
ity near a pre-specified target value, allows some control
over the LES errors , and knowing what this target value
implies for the total simulation error defines a deterministic
‘uncertainty quantification’ for LES. Investigating the rela-
tion between this target value and the reliability of the LES
predictions is an items of ongoing research toward a gen-
uine error bar for CFD.

In the context of LES, a study of the total simulation
error implies consideration of effects (i) of numerical dis-
cretization errors, (ii) of the role of the sub-filter model-
ing error due to the sub-filter model and (iii) of the inter-
action between these two basic sources of error (Geurts
(1999); Van der Bos et al. (2007)). Since the model-
ing and discretization errors can partially counteract each
other it is not straightforward to assess the overall simula-
tion error. Instead, one may resort to a computational as-
sessment, known as the error-landscape approach (Meyers
et al. (2003)). In a study of homogeneous isotropic turbu-
lence using Smagorinsky’s eddy-viscosity model, the error-
landscape displays a clear minimal total error as function of
spatial resolution N and model parameter, marking an ‘op-
timal refinement strategy’. A computational estimate of the
optimal Smagorinsky coefficient at given spatial resolution
can be obtained at modest cost using the Successive Inverse
Polynomial Interpolation (SIPI) method, (Geurts & Meyers
(2006)). Since the dependence of the optimal coefficient on
the spatial resolution is quite modest, one may proceed in
two steps. First, at coarse resolution the optimal coefficient
is determined. Subsequently, at finer resolution, production
simulations can be executed with this optimal coarse grid
value.

In the ILSA formulation (Piomelli et al. (2015)), the
filter width ∆ is a fraction of the local integral length-scale
based on the resolved turbulent kinetic energy Kres and the
total dissipation rate εtot . Another key ingredient in ILSA
model is the model parameter Ck. In ILSA’s original formu-
lation (Piomelli et al. (2015)), Ck was adjusted using SIPI.
In its local formulation, Ck is adjusted dynamically, consis-
tent with a measure for explicit error control. For such a
measure for the error several options can be considered -
we focus on an invariant of the sub-filter stress tensor. An
approach based on the concept of sub-filter activity (Geurts
& Fröhlich (2002)) the appropriate model coefficient can
be determined. In this contribution we sketch the details
of the method next. Afterwards, we introduce the problem
of turbulent mixing in a transitional and turbulent temporal
mixing layer. Subsequently, we consider predictions of the
evolution of the momentum thickness and compare ILSA
predictions with filtered DNS results and findings based on
other, well-known, sub-filter models. Concluding remarks
are collected afterwards.

THE INTEGRAL LENGTH SCALE APPROACH
In this Section we briefly review the main components

that make up the total simulation error in LES and discuss
the possible error-cancellation implying that the total sim-
ulation error may not simply be the sum of the absolute
values of modeling and discretization errors (Geurts, 1999;
Geurts 2002). A standard formulation for LES assumes a

spatial convolution filter with an effective width ∆ coupling
the unfiltered Navier-Stokes solution to the filtered solution.
We consider incompressible flows, governed by conserva-
tion of mass and momentum respectively,

∂ ju j = 0

∂tui +∂ j(uiu j)+∂i p−
1

Re
∂ j jui =−∂ j(uiu j−uiu j)

where the overbar denotes the filtered variable. Here, we
adopt Einstein’s summation convention and use p for the
pressure and u for the velocity field. Time is denoted by
t and partial differentiation with respect to the j-th coordi-
nate by the subscript j. Relevant length- (λ ) and velocity
(U) scales, and constant kinematic viscosity (ν) are used to
non-dimensionalize the equations and define the Reynolds
number Re = Uλ/ν . On the left-hand side we observe the
incompressible Navier-Stokes formulation in terms of the
filtered variables. On the right hand side the filtered mo-
mentum equation has a non-zero contribution expressed in
terms of the divergence of the sub-filter stress tensor

τi j = uiu j−uiu j

The sub-filter tensor expresses the central ‘closure problem’
in LES, as it requires both the filtered as well as the un-
filtered representation of the solution. Since only the fil-
tered solution is available in LES, the next step in model-
ing the coarsened turbulent flow is to propose a sub-filter
model M in terms of the filtered solution only. Numerous
sub-filter models have been proposed for LES. In this pa-
per we restrict ourselves to eddy-viscosity models, in which
the anisotropic part of sub-filter stress tensor is given by
τa

i j = −2νs f sSi j , where Si j denotes the rate of strain ten-
sor of the filtered velocity field, i.e., the symmetric part of
the velocity gradient, and νs f s is the sub-filter scale eddy
viscosity.

To define an eddy-viscosity νs f s we follow the stan-
dard proposition that νs f s ∼ `2|S| in which |S| is the sized
of the filtered strain-rate tensor and ` a suitable length-scale.
We review the length-scale definition ` for LES based on
the resolved turbulent kinetic energy (TKE) and the dissi-
pation rate of total TKE. Rather than working with a grid-
based length-scale, as in traditional LES, referring to sub-
grid scales, we propose a flow-specific length-scale distribu-
tion defining the filter-width and hence refer to the LES ap-
proach as modeling the sub-filter scales. An important ben-
efit of this distinction is the fact that by resolving the new
length-scale on the computational grid, a smoothly vary-
ing filter width is generated that is consistent with the local
flow state, independent of the grid topology (Rouhi et al.
(2016); Lehmkuhl et al. (2019)). Additionally, with this
grid-independent filter width, grid convergence study is fea-
sible, allowing to discriminate between discretization and
sub-filter modeling contributions to the overall error.

The global ILSA model is an eddy-viscosity model in
which the anisotropic part of the sub-filter stress tensor is
given by with turbulent eddy-viscosity defined as

νs f s =
(

Cm∆

)2
|S| ≡

(
CmC∆L

)2
|S| ≡

(
CkL

)2
|S|

where Ck =CmC∆ is referred to as the ‘effective model co-
efficient‘, and the filter-width ∆ is expressed as a fraction of
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the local integral length-scale, ∆ =C∆L, inferred from

L =
〈Kres〉3/2

〈εtot〉

where the resolved turbulent kinetic energy (TKE) and total
dissipation rate are given by

Kres =
1
2

u′iu
′
i ; εtot = 2(ν +νs f s)S

′
i jS
′
i j

in terms of resolved velocity fluctuations and the corre-
sponding rate-of-strain tensor. Using the resolved TKE
rather than the total one does not affect the estimated length-
scale significantly (Piomelli et al. (2015)), as long as more
than 80% of TKE is resolved (Pope (2000)) Pope (2000).
The choice to use the integral length scale L implies that the
local LES resolution adapts itself dynamically to the tur-
bulence characteristics of the flow. The local grid resolu-
tion h should at least resolve the integral length scale L, i.e.,
L/h� 1. By selecting h appropriately, an approximately
grid-independent LES prediction may be obtained. More-
over, variations in L automatically can be used to generate
(adaptive) non-uniform grids on which to simulate the tur-
bulent flow at hand (Boersma et al., 1997).

Aside from the local integral length-scale L, a key in-
gredient of the ILSA model is that adaptations in the effec-
tive model coefficient are made consistent with a measure
toward explicit LES resolution control. This way, the ef-
fective model coefficient Ck should be obtained in response
to the flow characteristics. For this purpose the concept of
sub-filter activity (Geurts & Frhlich, 2002) is used. We ex-
ploit the local formulation of ILSA in which the spatially
and temporally non-uniform Ck can be found based on in-
variants of the sub-filter stresses directly. We introduce

sτ =
( 〈τa

i jτ
a
i j〉

〈(τa
i j +Ra

i j)(τ
a
i j +Ra

i j)〉

)1/2

where the anisotropic part of the sub-filter tensor is denoted
by τa

i j and the anisotropic part of the resolved stress ten-
sor by Ra

i j = u′iu
′
j−u′ku′kδi j/3. In case of an eddy-viscosity

model for the anisotropic sub-filter tensor τa
i j = −2νs f sSi j

with νs f s = (CkL)2|S|. The key innovation of ILSA is in
the fact that the user may specify the level of LES resolu-
tion in terms of the sub-filter activity sτ . Extensive studies
have been conducted into turbulent channel flow and turbu-
lent flow over a backward-facing step (Rouhi et al. (2016)).
Recently, the model has also been applied to more com-
plex flows, including separating boundary layers ((Wu &
Piomelli (2018)), a sphere, and the Ahmed body (Lehmkuhl
et al. (2019)). Most of these studies involve fully devel-
oped turbulence; a notable exception is the simulation of
the flow over the sphere, in which the boundary layer is
laminar, and the flow transitions to turbulence in the sepa-
rated shear layer. In this case the model was shown to have
the correct behavior: the eddy viscosity vanished where the
flow was laminar, and only developed once turbulence was
established. In the laminar-flow region the integral length
scale of turbulence was zero, as expected, so that the ra-
tio L/h was not larger than unity, as the model requires.
However, at appropriate resolution, the laminar flow can be

well captured at zero eddy viscosity. To understand better
the behavior of the ILSA model during laminar-to-turbulent
transition, here we consider a time-evolving flow in a tem-
poral mixing layer that starts from a laminar initial state and
develops into turbulence in the course of time. This flow
problem is discussed next.

TURBULENT MIXING - TRANSITIONAL AND
TURBULENT FLOW

To assess the quality of ILSA for turbulent mixing we
consider the classical model of a temporal mixing (Vreman
et al. (1997)). In a rectangular domain of Lx × Ly × Lz
a tanh-profile is adopted for the streamwise velocity u as
function of y and zero velocity in the y and z directions.
Periodic conditions are assumed in the x and z directions,
while a free-slip condition is applied at the boundaries in
the y direction. Apart from the initial mean velocity, also
a combination of linear stability eigenfunctions is added to
trigger a fast transition to a developed turbulent flow.

t = 20

t = 40

t = 80
Figure 1. Snapshots of the vertical velocity in a ‘tempo-
ral’ mixing layer at a Reynolds number of 50. The light
(dark)contours correspond with upward (downward) flow.

Adopting a Reynolds number of 50, based on the ini-
tial momentum thickness, the flow can be simulated in full
detail using a grid of 2563 cells and a central second or-
der, conservative finite volume spatial discretization. Three
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snapshots of the vertical velocity at t = 20, 40 and 80 are
shown in Figure 1. Initially, the roll-up of spanwise roller
structures dominates the flow, showing somewhat parallel
structures. These spanwise rollers grow and by t = 40 show
have well saturated and give rise to a subsequent self-similar
development of the mixing layer in which, e.g., the momen-
tum thickness of the mixing layer increases linearly in time.

ASSESSMENT OF ILSA FOR TURBULENT
MIXING

Mixing processes play an important role in a multi-
tude of technologies. A characteristic model for a ‘mixing
layer’ can be obtained experimentally by bringing together
two parallel streams of fluid, each with its own velocity.
As a consequence of the velocity differences on the upper
and lower side of the so-called splitter-plate, shear stresses
emerge where the two flows join. Fluid from the lower layer
is transported to the upper layer and vise versa, giving rise
to an effective turbulent mixing near the center of the mix-
ing layer. This flow is often modeled in a simpler temporal
setting (Vreman et al. (1997)). The temporal flow captures
the main physics of the mixing as is illustrated in figure 1.
The configuration is a box with periodic boundary condi-
tion in the streamwise and spanwise directions and free-slip
condition at the top and bottom boundaries.

A key quantity of interest is the momentum thickness.
Extensive simulations have been conducted to compare dif-
ferent LES predictions with filtered DNS findings. For the
LES 323 grid points were used. In Figure 2 we show a com-
parison of filtered DNS data against a range of well-known
sub-filter models. This flow configuration offers full assess-
ment of dynamic error control in ILSA as will be presented
in the full paper.
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Figure 2. Momentum thickness predicted by: filtered
DNS (marker o), ILSA (solid), dynamic eddy-viscosity
(dashed), Leray (dash-dotted).

CONCLUDING REMARKS
We investigated the reliability of LES predictions for

transitional and turbulent mixing in a temporal mixing layer.
The basic limitation in LES quality stems from an interplay
between effects of discretization errors and modeling error.
A key concept used for dynamic error control for LES in
this paper is the ‘sub-filter activity’. This measures the dy-
namic relevance of scales that were removed from the dy-
namics through spatial filtering. Depending on whether ‘a

lot’ of small scales were removed during coarsening or not,
the main source of total simulation error may vary from that
of being dominated by sub-filter modeling error to that of
being dominated by spatial discretization error. Adhering
to a description that keeps the measure for the sub-filter ac-
tivity near a pre-specified target value, allows some level of
control over these dominant LES errors.

The local ILSA model holds promise to be effective in
LES also for wider classes of turbulent flow. Further studies
to underpin this should include stronger variations in flow
properties, including re-laminarization. Moreover, investi-
gating the role of the target value for the sub-filter activity
level on the reliability of the LES predictions and the con-
vergence with spatial resolution are items of ongoing re-
search toward a genuine error-bar for CFD.
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