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ABSTRACT
A map-based stochastic approach, One-Dimensional

Turbulence (ODT), is applied to analyze the incompress-
ible spatially developing turbulent boundary layer (SBL).
The application of ODT to investigate the turbulent bound-
ary layer is revisited for the spatial ODT formulation as it is
physically more relevant. In the present preliminary study,
the SBL canonical flow problem is formed by a plain mov-
ing wall and a free stream at rest. The flow variables are re-
solved on all scales along a 1-D domain. These variables are
resolved by a deterministic process representing the molec-
ular diffusion and a stochastic process modeling the effect
of turbulent advection and pressure fluctuations. Due to the
reduced dimensions in the model, it achieves major cost re-
ductions as compared to the full 3-D simulations and is,
thus, able to explore large parameter regimes. The sim-
ulations are presented for momentum thickness Reynolds
number, Reθ ≈ 2000 with Reθ = Ubθ/ν , where ν is the
kinematic viscosity, Ub is the uniform velocity provided at
the bottom wall and θ is the momentum layer thickness.
We have analyzed various features related to the turbulent
boundary layer, such as the mean, root mean square, skew-
ness and flatness velocity profiles and the shape factor ae
well as the skin friction coefficient using ODT and com-
pared our results to the available reference Direct Numeri-
cal Simulations (DNS) and Large Eddy Simulations (LES)
results. The comparison presented suggests that ODT is a
reasonably accurate approach for the simulations of the spa-
tially developing turbulent boundary layers.

INTRODUCTION
The study and understanding of turbulent boundary-

layer-type flows are a major topic in research due to nu-
merous applications in the atmospheric sciences, Engineer-
ing and industry. The spatial approach by Schlatter et al.

(2009), Schlatter & Örlü (2010, 2012), and the temporal
approach by Kozul et al. (2016) have been used to ana-
lyze the incompressible turbulent boundary layer. The spa-
tially developing boundary layer (SBL) are inhomogeneous
in the streamwise and wall-normal directions, which results
in large computational requirements discussed by Schlat-
ter et al. (2009), Schlatter & Örlü (2010), Spalart (1988),
and Jiménez et al. (2010). Despite the computational limi-
tations, the spatial approach is more relevant. The fully re-
solved 3-D simulations have been limited to small and mod-
erate momentum Reynolds number discussed by Schlatter
& Örlü (2012).

In the present paper, we utilize ODT by Kerstein
(1999) and Kerstein et al. (2001) as stand-alone tool for the
simulation of the SBL. Due to reduction of dimensionality,
the model enables the simulation of high Reynolds num-
ber turbulence over the full range of dynamically relevant
length scales. Although, it is difficult to capture all aspects
of a full 3-D DNS with a reduced order model, it is inter-
esting to check the predictability of the model for the sim-
plest possible set-up. To investigate complex flows, ODT
lines can be embedded in a coarse 3-D LES mesh referred
to as ODTLES (Schmidt et al. (2003, 2010), Glawe et al.
(2018)) removing the restriction to one dimension. In the
present study we aim to validate the stand-alone model for
the SBL by comparing the ODT results to the available ref-
erence DNS and LES data.

In the following, after providing a brief background of
the model and simulation set-up used for the present case,
we will compare ODT results to the DNS data by Schlatter
& Örlü (2010) and LES data by Eitel-Amor et al. (2014).
Firstly, we have discussed the variation of the structural
properties i.e., the shape factor and the skin friction co-
efficient as a function of momentum thickness Reynolds
numbers, Reθ . Secondly, we have presented the velocity
statistics up to fourth order for only one Reθ (≈ 2000) case
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in comparison with the DNS data from Schlatter & Örlü
(2010).

ODT MODEL FORMULATION
The original formulation of ODT was given by Ker-

stein (1999) and was later extended to include pressure
scrambling effects (Kerstein et al. (2001)). The model was
then gradually extended for the simulation of a variety of
flows. Here we will highlight some important references
which are, in general, important for the boundary layers. A
limited validation of a case involving forcing of a boundary
layer flow is presented by Lignell et al. (2013) and stably-
stratified boundary layers by Kerstein & Wunsch (2006).
Fragner & Schmidt (2017) presented an asymptotic suction
boundary layer exhibiting a temporal evolution running into
a statistical steady state. Further, the temporally develop-
ing turbulent boundary layer (TBL) has been investigated
by Rakhi et al. (2018), which further motivated our present
study for SBL due to its fundamental relevance.

Governing equations
In ODT, the governing equations are expressed in terms

of two independent variables. There are two possible ap-
proaches regarding this matter, one approach considers the
temporal ODT formulation (T-flow) and the another is the
spatial ODT formulation (S-flow). In the present study,
ODT models the spatial evolution of a 3-D turbulent flow
field in a 1-D subspace, which is aligned with the wall-
normal direction y. The density of the working fluid is con-
stant. The spatial evolution of the velocity vector ui(y,x),
where ui = u,v,w denotes the Cartesian components in the
streamwise, wall-normal and spanwise directions (Lignell
et al. (2013)), is described as

∂ [ui
2(y,x)]
∂x

+EE[u j(y,x)] = ν
∂ 2ui(y,x)

∂y2 . (1)

The first term of the above equation represents the local
change of the velocity vector with respect to longitudinal di-
rection x. The stochastic eddy event term EE, represents the
effects of the turbulent advection and fluctuating pressure
gradient forces due to turbulent eddy motions. The last term
represents the viscous forces, which involves the kinematic
viscosity ν and retain the Laplacian, though, restricted to
the ODT-resolved dimension. For the spatial formulation,
note that the mass flux is conserved instead of conserving
the mass in cells.

Eddy events
Eddy events, the term EE in the above equation, oc-

cur through the instantaneous displacement of the fluid ele-
ments to represent a turbulent stirring motion. This modifies
any property profile over the ODT line interval y0,y0 + l,
where y0 is the lower edge of a notional eddy and l its
size. The implementation of the eddy events uses triplet
map, which includes fluid displacement and fulfill two fun-
damental requirements: (i) the mapping is measure pre-
serving, and (ii) it does not introduce spatial discontinu-
ities. The triplet map essentially takes a scalar profile in
an eddy region and replaces it with three copies of the orig-
inal, each compressed by a factor of three, with the middle
copy inverted in order to avoid the discontinuities (Kerstein

(1999)). This corresponds to a physical mapping, that is, an
advective, transport of fluid from a given location y to a new
location f (y) defined as (Kerstein (1999))

f (y) = y0 +


3(y− y0), y0 ≤ y≤ y0 + l/3
2l−3(y− y0), y0 + l/3≤ y≤ y0 +2l/3
3(y− y0)−2l, y0 +2l/3≤ y≤ y0 + l
(y− y0), otherwise.

(2)

The mapped velocity field, ui( f (y),x), is further mod-
ified by the fluctuating pressure gradient forces with the
aid of a kernel function defined as K(y) = y− f (y), and
three coefficients ci, ui(y,x) → ui( f (y),x) + ciK(y) (Ker-
stein et al. (2001)). K(y) is by construction nonzero in the
eddy-size interval [y0,y0 + l] and it integrates to zero. The
coefficients ci are determined by considering the change of
the kinetic energy ∆Ei in the ith velocity component (Ker-
stein et al. (2001)) given as

∆Ei =
ρ

2
∫ y0+l

y0

([
ui
(

f (y),x
)
+ ci K(y)

]2
−u2

i (y,x)
)

dy. (3)

Energy conservation is achieved when the sum of the indi-
vidual contributions vanishes, i.e., ∆E1 +∆E2 +∆E3 = 0.
This constrains the selection of ci since each velocity com-
ponent has a finite amount of energy that can be removed
and added to the other two components.

The extractable kinetic energies (−∆Ei) are maximized
with respect to the ci in order to find an appropriate en-
ergy scale. This yields the maximum extractable energy,
Qi, given as

Qi =
1

2K̂
ρlu2

i,K , (4)

where

ui,K =
1
l2

∫ y0+l

y0

ui
(

f (y),x
)

K(y)dy, (5)

and

K̂ =
1
l3

∫ y0+l

y0

K2(y)dy. (6)

As mentioned by Kerstein et al. (2001), the pressure
fluctuations may not be universal and that the pressure fluc-
tuations do not necessarily imply a maximization of the
inter-component kinetic energy transfer. Therefore, the
model parameter α has been introduced to control the frac-
tion of each of the extractable (available) kinetic energies
that is actually used for the redistribution as

∆Ei =−αQi +
α

2
Q j +

α

2
Qk, (7)

where (i jk) are cyclic permutations of (123). The model
parameter α takes values in the range [0,1], where 0 means
no and 1 maximal transfer of the kinetic energy and equipar-
tition of the energies is approximated for α = 2/3. Finally,
the coefficients ci are obtained by inserting Eqs. 4 and 7 in
Eq. 3.
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Eddy event selection
Eddy events have been formulated above, but it re-

mains to determine their location y0, size l, and streamwise
position x of occurrence. These three stochastic variables
are governed by an ‘eddy rate distribution’ λ (y0, l,x) Ker-
stein (1999), where λ (y0, l,x)dy0 dl dx specifies the num-
ber of eddies in the size range [l, l + dl], position range
[y0,y0 + dy0] and in a space interval [x,x+ dx]. The eddy
position relates only to the region where turbulence is ac-
tive such that λ can be rewritten on dimensional grounds
as

λ (l,y0,x) =
C

l2 τ(l,y0,x)
. (8)

Here, τ is the eddy turnover time related to the instanta-
neous flow state and C is a proportionality constant related
to the overall rate of eddy events in the flow. The latter is
a model parameter that needs to be estimated for a given
flow configuration since the turbulence intensity in general
depends on the prescribed forcing mechanism.

To calculate τ , we consider the kinetic energy per unit
mass l2/τ2 contained in the eddy motion. Consistency of
the formulation demands that this energy is similar to the
extractable kinetic energy as given in Eqs. 3 and 4 above.
This yields

l2

τ2 ∼
3

∑
i=1

u2
i,K −Z

ν2

l2 . (9)

Here, u2
i,K are summed instead of ∆Ei, showing that the to-

tal extractable kinetic energy does not depend on the inter-
component energy transfer (model parameter α). The last
term in Eq. 9 represents the damping effects of the viscosity.
The corresponding model parameter Z takes values larger
or equal to zero, where Z = 1 effectively suppresses eddy
events below the Kolmogorov scale (Kerstein (1999)). This
parameter has been introduced originally to improve the nu-
merical efficiency since such small eddy events do not con-
tribute to the turbulent transport.

The eddy time scale τ is computed from the instanta-
neous velocity profiles ui(y,x), once the location y0 and size
l of an eddy event have been selected,

1
τ
=

√√√√ 1
l2

3

∑
i=1

u2
K,i−Z

ν2

l4 . (10)

The eddy time scale τ is in turn compared with the mean
sampling time scale τs to obtain the acceptance probability
pa = τ/τs� 1 of a physically plausible eddy event. For this
purpose, τ needs to be computed at a specific point in time
that is obtained with the aid of a marked Poisson process.
This process assumes that eddy events are independent of
each other, such that the time increment between two such
events can be sampled economically from an exponential
distribution. We refer the reader to Kerstein (1999) for fur-
ther details.

SIMULATION SET-UP
The spatial formulation of ODT allows simulations of

flows that are statistically 2-D and the time dimension is re-
placed by evolution in a direction spatially orthogonal to the

ODT line (Lignell et al. (2013)). The ODT computational
domain is a line of size (height) D. The SBL is realized on
this line by prescribing Dirichlet boundary condition at the
bottom wall with Ub = 12 m/s and Neumann condition at
the top wall. For practical reasons, we take the lower wall
as moving and the free stream at rest. The velocity statistics
are obtained on an ensemble basis using at least N = 1000
members. These members are individual ODT realizations
that can be run in parallel on a large computing cluster. All
members are autonomous so that communication is not a
limiting factor. An ensemble of different turbulent solutions
is obtained from the same initial conditions by varying the
seed of the underlying random number generator.

The streamwise velocity component u has been initial-
ized using a laminar profile generated by solving diffusion
part using the ODT model. The ODT laminar profile is sim-
ilar to the laminar Blasius profile used to initiate the DNS
results. The other velocity components (v,w) are initialized
to zero. The simulations are carried out for different mo-
mentum Reynolds numbers, Reθ = θUb/ν , where θ is the
momentum layer thickness and the kinematic viscosity ν of
the working fluid is fixed as ν = 1.5× 10−5 m2/s (air). In
the present paper we have presented the analyses only for
Reθ ≈ 2000. The domain size D has been selected such that
it is constant in bulk units ν/Ub, that is, DUb/ν = 45,000
(or 100 in terms of δ ?, which is the displacement thickness).

Eddy events are efficiently sampled from empirical dis-
tributions. The specific choice does not change the results
as long as the physically relevant range-of-scales is permit-
ted as discussed by Kerstein (1999). In the present imple-
mentation (Lignell et al. (2013)), three numerical parame-
ters are needed: the maximum (Lmax), minimum (Lmin), and
most probable (Lp) eddy size. The maximum eddy size has
been selected as Lmax Ub/ν = 27,000, which corresponds to
60% of the domain size. This aids the numerical efficiency.
The minimum eddy size, Lmin, is estimated from the Kol-
mogorov length scale with the aid of pre-simulations. For
the most probable eddy size we have used Lp = 3Lmin to
capture the initial transient stage.

At last, we note that a dynamic adaptive mesh by
Lignell et al. (2013) is used to carry out the simulations.
This demands the specification of several more numerical
parameters but here we have used the default values for
most of them. The most important adaptivity parameters
control the size range of the cells and the frequency of mesh
adaptations. The minimum and maximum allowed grid cell
sizes must be spaced sufficiently from each other for the
dynamic mesh adaption procedure (Lignell et al. (2013)).
Here we have used the minimum and maximum grid cell
sizes of the reference DNS by Schlatter & Örlü (2010). The
physical model parameters, α = 2/3, C = 6 and Z = 600
are used for the simulations of the SBL configurations. The
selection procedure for these parameters is not in the scope
of the present paper. Note that we follow the usual con-
vention and denote the variables rescaled to the viscous
units with the superscript ‘+’, for example, u+ = u/uτ and
y+ = y/yτ , where uτ is the frictional velocity (uτ =

√
τ0/ρ

with τ0 ≡ −µ∂u/∂y |0> 0) and yτ is the viscous reference
length scale (yτ = ν/uτ ).

Variation of the structural properties with mo-
mentum Reynolds numbers

For SBL, the ODT structural properties, i.e., the shape
factor (H) and the skin friction coefficient (C f ) with Reθ
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Figure 1. The quantity H as a function of Reθ up to
Reθ ≈ 10000. For comparison, the reference DNS data
from Schlatter & Örlü (2010) and LES data from Eitel-
Amor et al. (2014) is shown.

are discussed in this section. For comparison, the reference
DNS data from Schlatter & Örlü (2010) up to Reθ ≈ 4300
and LES data from Eitel-Amor et al. (2014) up to Reθ ≈
8300 is also plotted for the structural properties.

The shape factor (H) is the ratio of the displacement
thickness and momentum thickness, i.e., H = δ/θ , and is
plotted with Reθ in Figure 1. It gives a direct quantita-
tive estimation of the mean streamwise velocity profile in-
dependent of the skin friction. The figure also displays the
DNS up to Reθ ≈ 4300 and the LES data up to Reθ ≈ 8300
from Schlatter & Örlü (2010); Eitel-Amor et al. (2014). Al-
though, we see a convergence of the shape factor at higher
Reθ but the ODT data does not show good agreement with
the reference data. In the small Reθ range we report a dif-
ferent Reθ trend and in the range from 2000 < Reθ < 8000,
ODT under-predicts the value for the shape factor in com-
parison with the DNS as well as LES data. Nevertheless, it
is worth noting the behaviour for this property for a reduced
order model.

Figure 2 shows the development of the skin friction co-
efficient, C f = 2/(U+

b )2, with Reθ . C f is defined as the ra-
tio of the wall shear stress to the dynamic pressure. The
behaviour in case of SBL is very much similar to TBL re-
ported in Rakhi et al. (2018). Initially, the profile for ODT
shows deviation from the DNS and LES data, although as it
reaches the final turbulent equilibrium state, it finally tends
towards the reference data, showing asymptotic insensitiv-
ity to the initial conditions. The behavior of C f is similar
to the DNS and LES profiles reported by Schlatter & Örlü
(2010); Eitel-Amor et al. (2014) form Reθ ≈ 2500 onward
with a slight under-prediction of the C f using ODT method-
ology. However, in the small Reθ range we observe an in-
consistent trend with respect to Reθ in case of the reduced
order model in comparison with the reference data. The C f
peak amplitude could be modified by changing the model
parameters. With the chosen combination of parameters,
however, the qualitative trends are sufficiently well repro-
duced, as well as the collapse into the fully turbulent state
along with the lower and higher order statistics, thus con-
firming the predictive capabilities of ODT.

Figure 2. Skin friction coefficient C f as a function of Reθ .
For comparison, the reference DNS data from Schlatter &
Örlü (2010) and LES data from Eitel-Amor et al. (2014) is
shown.

VELOCITY STATISTICS
The predictive capabilities of ODT are addressed in

this section by keeping the fixed bulk velocity. The physi-
cal model parameters are frozen for this purpose at α = 2/3,
C = 6 and Z = 600. The ODT simulation results up to the
fourth order velocity statistics are discussed and compared
to the available reference DNS results of Schlatter & Örlü
(2010) at Reθ ≈ 2000.

Velocity statistics up to second order
Figure 3 (left) displays the mean streamwise velocity

profile as a function of the wall-normal coordinate in vis-
cous units at Reθ ∼ 2000 along with the DNS reference
from Schlatter & Örlü (2010). We have U+

b − u+ on y-
axis due to the simulation set up used in the present study.
The ODT profile shows very good agreement with the DNS
data with very slight deviation only in the outer-log region.
This shows the ability of ODT to capture transitions from
the inner to the buffer layer, and further into the log-region.

The root mean square (rms) of the normalized stream-

wise velocity component (u+rms =
√

u′2/uτ ) as a function of
normalized wall-normal coordinate in viscous units is de-
picted in Figure 3 (right) at Reθ ∼ 2000. The peak ampli-
tude is under-predicted by ODT compared to the DNS data.
This peak can be optimized by choosing small value of the
model parameter C, but in that case the velocity profile tends
towards a laminar profile. This ODT feature has already
been reported in the literature by Schmidt et al. (2003), and
can be avoided by retaining some 3-D information of the
flow.

The double peak arising near to the wall, y+ ≈ 10, rep-
resents an artifact generated by the topology of the triplet
map close to the wall. This is explained in more detail by
Lignell et al. (2013). Although the peak is under-predicted
for rms, some general trends from the DNS data from
Schlatter & Örlü (2010) are confirmed with the ODT for
the given initial condition and for the chosen physical pa-
rameters.
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Figure 3. Left: The mean streamwise velocity profile; Right: The root mean square velocity profile, as a function of wall-
normal coordinate (in viscous units) at Reθ ≈ 2000. For reference, DNS data is plotted from Schlatter & Örlü (2010).

Figure 4. Left: Skewness and Right: Flatness, of the streamwise velocity component as a function of wall normal coordinate
(in viscous units) at Reθ ≈ 2000. For reference, DNS data from Schlatter & Örlü (2010) is shown.

Velocity statistics up to fourth order

The skewness of the streamwise velocity component,
−u′3/u3

rms, as a function of wall-normal coordinate (in vis-
cous units) at Reθ ∼ 2000 is depicted in Figure 4 (left). It
can be seen that the ODT model tends to over-predict the
positive skewness near the wall i.e. y+ < 10. The skweness
profile show agreement with the reference DNS in the outer
region between 10 < y+ < 500. However, there are large
disagreements and very different trends in the outer-log re-
gion, where DNS profiles exhibit a sudden increase in the
skewness values. This feature is not captured by ODT, and
is presumably attributed to the missing 3-D coherent struc-
ture information. This figure also illustrates the potential of
ODT to calculate the third order velocity statistics. A sim-
ilar behaviour was observed for a TBL using ODT (Rakhi

et al. (2018)). The ODT profiles are qualitatively consistent
with the DNS data.

Figure 4 (right) shows the flatness of the streamwise
velocity component, u′4/u4

rms, as a function of wall-normal
coordinate at Reθ ∼ 2000. ODT highly under-predicts the
fourth-order velocity statistics in the inner region near the
wall, i.e., y+ < 8. The flatness in case of SBL, is over-
predicted in the region between 8 < y+ < 600. However,
in case of TBL, this region was reported as 10 < y+ < 80.
A Gaussian flatness with a value close to three is observed
close to the wall for the ODT results. In general, ODT is
more Gaussian than the DNS, which we attribute to the 3-
D eddy motions and vortex stretching which leads to in-
homogeneity but remains unresolved in ODT. The full 3-D
instabilities and coherent structures exhibited by the DNS,
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are completely absent in the stochastic picture of ODT.
The profile do not show good agreement with the DNS
data. As explained for rms profiles, in case of flatness as
well, we might need to retain some 3-D information in a
non-standalone application of ODT in order to reproduce
fourth-order velocity statistics to overcome this limitation
(Schmidt et al., 2003, 2010), (Glawe et al., 2018) and, thus,
allowing simulations of much more complex flows.

CONCLUSIONS
In the present paper, we apply the ODT model for the

first time to investigate the incompressible spatially devel-
oping turbulent boundary layer. The model resolves the
flow variables along a 1-D computational domain in which
the viscosity effects are represented by the deterministic dif-
fusion equation and the turbulent advection by stochastic
mapping events. We compare the velocity statistics such
as mean, root mean square, skewness and flatness as wall-
normal profiles produced from ODT to the reference DNS
data from Schlatter & Örlü (2010) at Reθ ≈ 2000. The key
findings of the preliminary study are summarized as fol-
lows:

1. The mean streamwise velocity matches to the refer-
ence DNS results up to a good degree showing that the
model is able to capture flow dynamics ranging from
the viscous sublayer through the buffer layer and into
the logarithmic layer.

2. The peak amplitude of the root mean square veloc-
ity profiles is under-predicted compared to the refer-
ence data confirming the known limitation of the model
reported earlier by Kerstein (1999); Kerstein et al.
(2001); Lignell et al. (2013), which may be alleviated
by retaining 3-D information.

3. The skewness of the streamwise velocity component
is slightly under-predicted in the inner region, over-
predicted in the buffer region and we see disagreement
in the outer region for the SBL solution.

4. The flatness of the streamwise velocity component
is only reproduced in a certain region by using the
reduced-order formulation. As commented before,
capturing higher order statistics may require retaining
some 3-D information.

The major focus of the model is representing the dy-
namics close to the wall in the boundary layers and ensure
the qualitative reproducibility of the velocity statistics up to
third order. The ODT model achieves considerable cost re-
duction as compared to the full 3-D simulations. The com-
parison presented here suggested that ODT is able to repro-
duce several DNS velocity statistics for the incompressible
spatially developing turbulent boundary layers which makes
ODT an interesting tool for the investigation of boundary-
layer-type flows for high Reynolds numbers.
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Eitel-Amor, G., Örlü, R. & Schlatter, P. 2014 Simulation

and validation of a spatially evolving turbulent boundary

layer up to Rθ = 8300. International Journal of Heat and
Fluid Flow 47, 57–69.

Fragner, M. M. & Schmidt, H. 2017 Investigating asymp-
totic suction boundary layers using a one-dimensional
stochastic turbulence model. Journal of Turbulence 18,
899–928.

Glawe, C., Medina M., J. A. & Schmidt, H. 2018
IMEX based multi-scale time advancement in ODTLES.
Zeitschrift für Angewandte Mathematik und Mechanik
98, 1907–1923.
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Schlatter, P. & Örlü, R. 2010 Assessment of direct numeri-
cal simulation data of turbulent boundary layers. Journal
of Fluid Mechanics 659, 116–126.
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