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ABSTRACT
Particle Image Velocimetry (PIV) systems are often

limited in their ability to fully resolve the broadband tempo-
ral fluctuations associated with turbulent flows due to hard-
ware limitations or cost constraints. In this study, we use
physics-based models grounded in Rapid Distortion Theory
(RDT) to reconstruct the time evolution of wall-bounded
turbulent flows between consecutive PIV snapshots. The
linear RDT equations are integrated forwards and back-
wards in time from the PIV snapshots, and the flow field in
the intervening period is estimated via a weighted summa-
tion of these forward- and backward-time estimates. The
weights used for this fusion are formulated to account for
the advective nature of the RDT equations. The backward-
time integration is unstable over longer time horizons due
to negative diffusion. To overcome this problem, the lin-
ear RDT equations are further simplified to retain just the
advective term. In other words, Taylor’s frozen turbulence
hypothesis is employed for the backward-time integration.
Reconstruction accuracy is evaluated as a function of spatial
resolution and time horizon using Direct Numerical Simu-
lation (DNS) data for turbulent channel flow from the Johns
Hopkins Turbulence Database.

INTRODUCTION
Laboratory instruments are often limited in their abil-

ity to fully resolve the broadband spatiotemporal fluctua-
tions associated with turbulent flows. Field measurement
techniques, such as Particle Image Velocimetry (PIV), can
have high spatial resolution but are typically restricted in
temporal resolution due to hardware limitations or cost
constraints. Conversely, techniques such as Hot-Wire
Anemometry (HWA) that have high temporal resolution are
limited to point measurements.

To bridge this gap in diagnostic capabilities, a num-
ber of previous studies have fused time-resolved point data
with spatially-resolved field data for flow reconstruction.
Most of these efforts reconstruct the flow via projection
onto spatial basis functions obtained from field data (e.g.,

modes from proper orthogonal or dynamic mode decompo-
sition). Time-resolved data are then used to infer the tem-
poral variation of mode amplitude (Tu et al., 2013; Berry
et al., 2017; Discetti et al., 2018). However, this approach
requires extensive prior data and there is no guarantee that
the reconstructed flow field will be physically sound, i.e.,
satisfy the governing equations. Recent efforts have also
employed basis functions obtained directly from the gov-
erning Navier-Stokes equations (NSE) for reconstruction.
For example, Gómez et al. (2016) projected velocity mea-
surements from a bluff body wake onto resolvent modes
to estimate the unsteady aerodynamic forces. Similarly,
Beneddine et al. (2017) employed a resolvent-based frame-
work to reconstruct the full flow field for a round jet based
on a single point measurement.

Building on these previous efforts, which have primar-
ily considered narrow-banded flows (e.g., wakes, jets), the
present study seeks to create a physics-based framework
for reconstruction of more complex wall-bounded turbu-
lent flows. Specifically, we employ models grounded in
Rapid Distortion Theory (RDT), which has strong connec-
tions with resolvent analysis (McKeon, 2017), to recon-
struct the time-evolution of such flows from ‘slow’ field
measurements (e.g., from non time-resolved PIV). To test
this reconstruction framework, we employ direct numerical
simulation (DNS) data for turbulent channel flow at friction
Reynolds number Reτ = 1000 from the Johns Hopkins Tur-
bulence Database (JHTDB, see e.g., Graham et al., 2016).
This is a step towards the development of a mathematical
framework that can be used to fuse such ‘slow’ field mea-
surements with ‘fast’ point measurements (e.g., from HWA)
to reconstruct the flow field in a physically consistent man-
ner via Bayesian optimal estimation.

METHODS
Theory

To reconstruct the velocity field between two consec-
utive PIV snapshots in a turbulent channel flow, we use
models grounded in RDT, which linearizes the NSE about
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a mean profile (Batchelor & Proudman, 1954; Savill, 1987;
Hunt & Carruthers, 1990) to yield the following momentum
equation and continuity constraint:

∂u
∂ t

+U ·∇u+u ·∇U =−∇p+
1

Reτ

∇
2u+(NL), (1)

and

∇ ·u = 0. (2)

In the expressions above, U = (U(y),0,0) represents the
mean profile, u = (u,v,w) denotes the turbulent velocity
fluctuations, p is pressure, and (NL) represents the (ne-
glected) nonlinear terms. A standard Cartesian coordinate
system is used, in which x is the streamwise direction, y is
the wall-normal direction, and z is the spanwise direction; t
is time.

Scaling arguments show that the nonlinear terms can be
neglected in turbulent shear flows for time horizons that are
shorter than the typical eddy turnover time (Savill, 1987;
Hunt & Carruthers, 1990). This makes RDT an appro-
priate choice for the present problem requiring temporal
reconstruction between sequential PIV snapshots. How-
ever, even with the substantial simplification afforded by
linearization, reconstruction based on the full RDT equa-
tions is likely to be difficult in practice. This is because
most common PIV systems are only capable of generat-
ing two-dimensional/two-component (2D-2C) field mea-
surements. Assuming these PIV measurements are carried
out in the (x,y) plane to yield velocity components (u,v),
additional simplifying assumptions are needed to account
for the out-of-plane flow and pressure gradient terms. Here,
we simply neglect these terms to yield the following cou-
pled advection-diffusion equations:

∂u
∂ t

+U
∂u
∂x︸ ︷︷ ︸

advection term

=
1

Reτ

(
∂ 2u
∂x2 +

∂ 2u
∂y2

)
︸ ︷︷ ︸

diffusion term

− v
∂U
∂y︸ ︷︷ ︸

coupling term

(3)

and

∂v
∂ t

+U
∂v
∂x︸ ︷︷ ︸

advection term

=
1

Reτ

(
∂ 2v
∂x2 +

∂ 2v
∂y2

)
︸ ︷︷ ︸

diffusion term

(4)

The equations above can be further simplified by assuming
that the advection term is dominant – equivalent to Taylor’s
frozen turbulence hypothesis – which yields

∂u
∂ t

+U
∂u
∂x

= 0. (5)

Below, we employ the linear models in (3)-(5) to reconstruct
the evolution of a turbulent channel flow between two 2D-
2C field measurement snapshots (e.g., from PIV) separated
by time interval T .

Note that reconstruction can proceed both forwards
and backwards in time. In other words, the equations above
can be integrated forwards in time using the first snapshot
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Figure 1. Schematic x− t diagram for the snapshots at a
given y location. The interfaces between the different col-
ors correspond to characteristic lines originating from each
snapshot. These characteristics depend on the local mean
velocity, U(y). The yellow region on the left-hand side of
this diagram is outside the region of influence (ROI) for
snapshot 1 (S1). Here, only the backward-time estimate
is used. Similarly, the blue region on the right-hand side
is outside the domain of dependence (DOD) for snapshot
2 (S2). Here, only the forward-time estimate is used. The
green region lies within the ROI and DOD of both snap-
shots. Here, the reconstructed velocity field is a weighted
sum of both the forward and backward predictions.

as the initial condition, as well as backwards in time us-
ing the second snapshot as the initial condition. Moreover,
an appropriately weighted combination of these forward-
and backward-time estimates has the potential to improve
reconstruction accuracy. Below, we develop physically-
motivated weighting schemes for this fusion.

Fusion of Forward and Backward Estimates
A simple way to fuse the forward (û f ) and backward

(ûb) estimates is to use weights that vary linearly in time

k f = 1− t
T

; kb =
t
T
. (6)

Here t = 0 corresponds to the initial snapshot and t = T
corresponds to the final snapshot, and the reconstructed flow
field is given by

û f b = k f û f + kbûb. (7)

This particular weighting scheme ensures that the forward-
time estimate is weighted more heavily closer to the initial
snapshot and the backward-time estimate is weighted more
heavily towards the final snapshot.

This weighting scheme can be improved further by
considering the mathematical nature of the equations
emerging from RDT and Taylor’s hypothesis (TH). Assum-
ing that the hyperbolic advection term is dominant, infor-
mation is expected to propagate at a speed corresponding to
the local mean velocity. This is illustrated in the x− t dia-
gram shown in figure 1. The region of influence (ROI) for
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the first snapshot and the domain of dependence (DOD) for
the second snapshot are determined by characteristics in the
x− t plane that have slope dt/dx = 1/U(y). The forward-
time estimate is expected to be accurate only in the ROI of
the first snapshot (i.e., green and blue regions in figure 1)
while the backward-time estimate is expected to be accu-
rate only in the DOD of the second snapshot (i.e., yellow
and green regions in figure 1). Further, since the slope of
the characteristics varies in the y direction, the size of the
ROI and DOD also vary with y.

To account for these effects, the weighting scheme
in (6) can be modified as follows. The linear weighting
scheme in (6) can be retained in the common region of pre-
dictability for both snapshots (green region in figure 1). The
forward weight, k f , is set to 0 in the region outside the ROI
of the first snapshot (yellow region in figure 1) and the back-
ward weight, kb, is set to 1. Similarly, k f = 1 in the region
outside the DOD of the second snapshot (blue region in fig-
ure 1) and kb = 0. The resulting equations for weights are:

k f (x,y, t) =


0 0 ≤ x < l f(
1− t

T
)

l f ≤ x ≤ 2h− lb
1 2h− lb < x ≤ 2h,

(8)

and

kb(x,y, t) =


1 0 ≤ x < l f
t
T l f ≤ x ≤ 2h− lb
0 2h− lb < x ≤ 2h.

(9)

where l f = U(y)t and lb = U(y)(T − t). Note that the
weights are now dependent on (x,y) as well as t.

Numerical Evaluation
To test reconstruction accuracy for the forward, back-

ward, and fused estimates, we use DNS data for turbu-
lent channel flow at Reτ = 1000 available from the JHTDB
(Graham et al., 2016). For consistency with typical PIV
systems, we only use 2D-2C velocity data in the x−y plane
that is sampled uniformly in time and space. The full dataset
acquired includes 512 snapshots obtained at intervals of
δ t+ = 0.0625, where a superscript + denotes normaliza-
tion with respect to the friction velocity uτ and viscosity ν .
Thus, the total time interval between the first and last snap-
shots is T+ = 512×δ t+ = 32. The field of view is of size
2h+× 2h+, where h+ = Reτ is the inner-normalized chan-
nel half-height. The grid resolution is ∆x+ = ∆y+ ≈ 4.

Equations (3)-(5) are numerically integrated forwards
and backwards in time from the first and last snapshots,
respectively. A standard finite difference scheme is used
for this purpose. An explicit Euler method is used for
time integration, a first-order upwinding scheme is used for
the advection term, and a second-order central differencing
scheme is used for the diffusion and coupling terms.

Only the first and last DNS snapshots are used to re-
construct the flow field. The intervening snapshots are used
to quantify reconstruction accuracy using the error metrics

ε(t) =

∫ 2h
x=0

∫ 2h
y=0

(
(u− û)2 +(v− v̂)2

)
dxdy∫ 2h

x=0
∫ 2h

y=0
(
û2 + v̂2

)
dxdy

(10)

and

ε(y, t) =

∫ 2h
x=0

(
(u− û)2 +(v− v̂)2

)
dx∫ 2h

x=0
(
û2 + v̂2

)
dx

(11)

where u and v are the reconstructed velocity fluctuations,
and û and v̂ are the velocity fluctuations from DNS ‘truth’.
Reconstruction accuracy is evaluated for the forward and
backward estimates individually, as well as for the fused
estimates. We also provide a brief evaluation of the effect
of field measurement spatial resolution (∆x+ = ∆y+) and
time horizon (T+) on reconstruction accuracy.

RESULTS AND DISCUSSION
As a baseline test, we first evaluate reconstruction er-

ror using the different methods discussed above over a time
horizon T+ ≈ 16. For reference, the error associated with
a direct linear interpolation between the two images is plot-
ted as a black line in figure 2. As expected, linear inter-
polation yields lower error closest to the snapshots (i.e.,
at the beginning and end of the time horizon). The maxi-
mum reconstruction error associated with linear interpola-
tion is ε ≈ 0.8. The forward-time RDT prediction (blue
line) performs much better initially than the linear interpo-
lation. However, the error associated with this technique
increases monotonically with time and exceeds the error
associated with linear interpolation after t+ ≈ 10. This
is because linear interpolation relies on information from
both the initial and final snapshots, while the forward-time
RDT model only uses information from the initial snapshot.
To overcome this limitation, we can also include informa-
tion from the backward-time RDT predictions, which have
significantly lower error towards the end of the prediction
time horizon (red line). The reconstruction that fuses the
forward- and backward-time RDT estimates based purely
on the temporal weights shown in (6) leads to a maximum
error of ε ≈ 0.5 (turquoise line), which is significantly lower
than the maximum error from linear interpolation. The spa-
tiotemporal weighting scheme shown in (8)-(9) reduces the
maximum error even further to ε ≈ 0.3 (green line).

The wall-normal distribution of the reconstruction er-
ror for the best performing technique (i.e., forward- and
backward-time RDT models fused with the spatiotempo-
ral weighting scheme) is shown in figure 2(b). The error
is higher in the inner region of the flow, below y/h ≈ 0.2
or y+ ≈ 200, where turbulent kinetic energy — and turbu-
lence production — are higher. Further, the error appears
to peak in the logarithmic region of the flow, near y+ ≈ 50.
However, this observation must be treated with some cau-
tion. Due to the linear distribution of grid points in the wall-
normal direction, there is insufficient spatial resolution to
provide a detailed evaluation of the reconstruction error in
the buffer layer. As expected, for a given wall-normal lo-
cation, the reconstruction error follows a similar trend as
in figure 2(a). The reconstruction error is maximum in the
middle of the time horizon and goes to 0 at the beginning
and the end.

Figure 3 compares DNS results for the time-varying
streamwise and wall-normal velocity fluctuations (a,b) in
the center of the streamwise domain being considered here
with the corresponding fused RDT reconstructions (c,d).
Similarly, figure 4 compares a snapshot of the fluctuating
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Figure 2. (a) Evolution of reconstruction error with time, computed using (10), for different methods: direct linear interpola-
tion (black), forward-time RDT (blue line), backward-time RDT (red line), fused RDT with temporal weights (turquoise line),
and fused RDT with spatiotemporal weights (green line). (b) Reconstruction error as a function of time and the wall-normal
coordinate, computed using (11), for the fused RDT estimate with spatiotemporal weighting. The contour plot is shown from
the wall (y+ = 0) to the channel centerline (y+ = 1000).

Figure 3. Comparison between the temporal evolution of the reconstructed velocity fluctuations and DNS results. Subfig-
ures (a) and (b) show DNS results for the horizontal and vertical velocity fluctuations as a function of time in the middle of
the streamwise domain considered here. Reconstructed velocity fluctuations at the same streamwise location are shown in
subfigures (c) and (d). These predictions correspond to the fused RDT model with the spatiotemporal weighting scheme.

velocity field from DNS (a,b) at the middle of the time hori-
zon, where the reconstruction error is expected to be high-
est, with the fused RDT estimate (c,d). These figures con-
firm that the RDT-based reconstruction qualitatively repro-
duces both the time-variation and spatial distribution of the
fluctuating velocities. Although the spatiotemporal weight-
ing scheme in (8) and (9) has spatial ‘shocks’, this is not re-
flected in the reconstructed snapshot. A further evaluation
(not shown here) does show the presence of discontinuous
velocity gradients in the reconstructed snapshot. In general,

the reconstructed flow fields do appear smoother than the
DNS results. This smoothing process could be attributed to
the fact that the nonlinear terms and the out-of-plane com-
ponent of the flow are neglected, which limits energy trans-
fer to small-scales. The lower spatial resolution used for
reconstruction compared to the DNS could also play a role.
Future work will evaluate whether reconstruction based on
3D snapshots (e.g., from tomographic PIV) and RDT yield
reduced errors.

The effect of grid size (∆x+=∆y+) and prediction time
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Figure 4. Comparison between the reconstructed velocity field and DNS results. Subfigures (a) and (b) show snapshots of
the horizontal and vertical velocity fluctuations obtained in DNS in the middle of the time horizon being considered, i.e. at
t+ ≈ 8, where the reconstruction error is maximum. Reconstructed velocity fluctuations at the same time instant are shown in
subfigures (c) and (d). Once again, these predictions correspond to the fused RDT model with the spatiotemporal weighting
scheme.
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Figure 5. (a) Maximum reconstruction error using the fused RDT model as a function of grid resolution and prediction time
horizon. The top left corner of the plot shows that as T+ increases, the prediction error increases dramatically for fine spatial
resolutions. (b) Reconstruction error using the RDT models (solid lines) and Taylor’s hypothesis (dashed lines) for ∆x+ = 4
and T+ = 32 for the forward-time integration (blue line), backward time integration (red lines) and the fused estimate (green
lines). Error for the backward-time RDT model increases rapidly towards the beginning of the prediction window. Error for
backward-time Taylor’s hypothesis estimate increases at a much slower rate. This leads to a substantial decrease in error for the
fused Taylor’s hypothesis estimate (dashed green line).

horizon (T+) on maximum reconstruction error with the
fused RDT model is shown in figure 5(a). In general, the re-
construction error decreases with decreasing ∆x+ and T+.
However, for T+ ≥ 24, the error increases dramatically with
a decrease in grid size (top left corner of figure 5(a)). This
is because the viscous diffusion term is unstable when in-
tegrating backwards in time, i.e., backward time integration

effectively yields a negative viscosity, which enhances ve-
locity gradients. As shown in figure 5(b), this effect domi-
nates the backward-time RDT estimates (solid red line) over
long time horizons.

To overcome this problem, we use Taylor’s hypothe-
sis (TH) for reconstruction, which assumes that the flow is
dominated by the advection term. The diffusion and cou-

5



11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11)
Southampton, UK, July 30 to August 2, 2019

pling terms are neglected leading to (5). With just the ad-
vection term, the governing equations are hyperbolic in na-
ture and the spatiotemporal weighting scheme shown in (8)-
(9) is appropriate for fusion of the forward- and backward-
time reconstructions. As shown in figure 5(b), the accu-
racy of reconstruction with Taylor’s hypothesis is similar
to that with RDT for the forward-time reconstruction. The
forward-time RDT estimate only yields a minor reduction
in reconstruction error. However, for the backward-time es-
timate, Taylor’s hypothesis outperforms RDT significantly.
Hence, the error for the fused reconstruction under Taylor’s
hypothesis is also much lower than that for the fused RDT
model.

CONCLUSION
The results presented in this paper show that both RDT

and Taylor’s hypothesis provide useful models for the re-
construction of turbulent flows from ‘slow’ field measure-
ments. The forward-time reconstruction accuracy is com-
parable for both classes of models. However, the backward-
time RDT dynamics are unstable, degrading reconstruc-
tion over longer time horizons. Overall, this makes mod-
els grounded in Taylor’s hypothesis more attractive when
reconstruction is required over longer time horizons. This
also motivates the need for more formal dynamic estimation
that can stabilize the error dynamics.

The success of Taylor’s hypothesis and the spatiotem-
poral weighting illustrated schematically in figure 1 is not
surprising given the advection-dominated nature of wall-
bounded turbulent shear flows. Indeed, Taylor’s hypoth-
esis has been used extensively to translate time-resolved
velocity measurements (e.g., from HWA) into spatial flow
fields and wavenumber spectra in prior turbulence literature
(e.g., Wyngaard & Clifford, 1977; Dennis & Nickels, 2008;
Moin, 2009). Here, we use Taylor’s hypothesis to translate
spatially-resolved field measurements into improved tem-
poral resolution. Note that improved temporal resolution
is only possible if the measurement spatial resolution is
high enough to ensure that the frequency corresponding to
the spatial Nyquist limit f+s = U+/(2∆x+) is higher than
the temporal Nyquist frequency f+t = 1/(2T+). Moreover,
the spatiotemporal weighting scheme shown in figure 1 can
only be used in cases where U+T+ ≤ L+

x , where L+
x is the

streamwise length of the measurement domain. If this con-
dition is not satisfied, portions of the x− t plane may fall
outside of the ROI of snapshot 1 and outside the DOD of
snapshot 2.

Moving forward, this research effort will verify the
spatiotemporal limits discussed in the previous paragraph
quantitatively. Reconstruction from 3D snapshots will also
be attempted to inform the development of 2D models that
improve upon the simple — and admittedly ad-hoc — re-
lations shown in (3)-(5). Ultimately, this work will feed
into the development of a dynamic estimation framework
that can fuse information from multiple noisy and uncertain
field or point measurements and physics-based models in a
statistically optimal manner.
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