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ABSTRACT
The One-Dimensional Turbulence model is modified

in this work for its application to a classical electrohydrody-
namic (EHD) problem. Being the first study case, this work
is focused on the influence of electrostatic fields and space
charge on the velocity field inside a wire-plate Electrostatic
Precipitator (ESP) with one-way-coupling dynamics. The
study case is an attempt to replicate velocity profiles and
Turbulent Kinetic Energy (TKE) budgets obtained in the
Direct Numerical Simulation (DNS) carried out by Soldati
and Banerjee (1998). Qualitative trends are confirmed in
preliminary ODT results, thus showing the potential of the
stochastic ODT modeling approach for other types of EHD
flows.

GENERAL CONSIDERATIONS ON NUMERI-
CAL EHD FLOW MODELLING

Electrostatic precipitation is highly appealing in the in-
dustry due to its uses in flue gas purification or chemical
manufacture. Adamiak (2013) offers a formidable literature
review on numerical models in ESP research. In general,
the limited understanding and unavailability of proper clo-
sure models for electrohydrodynamic (EHD) flows makes
numerical simulation research largely dependant on Direct
Numerical Simulation (DNS) methods.

In order to understand part of the interactions that may
occur in EHD flows, as well as some modelling considera-
tions, we refer to a general definition of the electrical cur-
rent density ~J from Panofsky & Phillips (2005). Neglecting
magnetic contributions to the electric current, we can de-
fine for the simple case of current generated by pure ionic
charges,

~J = ρ f~V +b~Eρ f +
∂~P
∂ t

(1)

The first term in the right hand side (RHS) of Eq. (1) is the
convective current of the free charge. It is normally granted

that the velocity of the ions is significantly larger than the
flow velocity, ~Vions�~V , and therefore, the convective term
can be ignored in leading order. We refer to this asymp-
totic limit as a one-way-coupling dynamic, as in Soldati &
Banerjee (1998). The second term in the RHS of Eq. (1)
is the true current, given by the charge collisions and the
drift velocity of the charges. Here, b is the ionic mobility
coefficient, ρ f is the ionic charge density and ~E is the elec-
tric field produced by the charge distribution. Finally, the
last term refers to the electric polarization current, given by
the rate of change of the electric polarization vector ~P. This
term can be ignored in fluids with very low electric suscep-
tibility, such as air.

Soldati & Banerjee (1998) were pioneers in the appli-
cation of DNS to study one-way-coupled EHD flow fields
in ESPs. After Soldati and Banerjee, EHD flow research
achieved yet another important milestone when Schmid
& Vogel (2003) discussed and analyzed Eulerian and La-
grangian approaches for modelling particle transport in
ESPs. Recently, the first closure modeling for EHD flows
using a Reynolds Stress Model (RSM) was introduced by
Kourmatzis & Shrimpton (2018). Closure models for EHD
flows are challenging due to the highly non-linear nature
of the TKE budget term ~V ′ · ~J′, which is the mean rate at
which the electric body force (EBF) contributes energy to
the turbulence (see Davidson & Shaughnessy (1986)).

In this work, we pursue an alternative stochastic ap-
proach to study EHD flows. The One-Dimensional Turbu-
lence (ODT) model is a neat and relatively accessible 1-D
stochastic turbulence model, which works in an operator
splitting fashion for turbulent advection and molecular dif-
fusion (see Kerstein (1999)). Since this work is the first ap-
plication of ODT in EHD flows, we focus on a validation of
the newly proposed approach with the DNS data from Sol-
dati & Banerjee (1998). For that, we discuss first the new
modelling considerations. Traditional ODT formulation as-
pects are not discussed here. These can be found elsewhere,
e.g. Ashurst & Kerstein (2005) and Lignell et al. (2013).
The case set-up and simulation parameters are presented
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Figure 1: Sketch description of an eddy event taking
place at a certain position in the flow within an ESP.

afterwards. Simulation results are then analyzed from the
point of view of the validation of the model, as well as a fo-
cus on small physical insights on turbulent transport which
can be straightforwardly obtained with ODT. Finally, we
give some closing remarks regarding the applicability of the
model and a brief outlook on future research opportunities.

ODT MODEL FOR ONE-WAY-COUPLED EHD
FLOWS

Eddy events, which represent effects of turbulent ad-
vection on a 1-D domain, are selected following a statistical
Poisson process involving the position and the length of an
eddy, y0 and l, respectively. Every eddy deemed energet-
ically plausible by its calculated rate λ provokes a deter-
ministic advancement process, as in Lignell et al. (2013).
This operation involves the temporal (T-ODT) or spatial (S-
ODT) advancement of deterministic ODT evolution equa-
tions. T-ODT and S-ODT formulations construct, there-
fore, eddy rates of the shape λ (y0, l, t) or λ (y0, l,x), respec-
tively. In this work, we focus on the S-ODT advancement.
This takes place from a starting position x0 to a position
x0 +∑∆xsampling at the position of an implemented eddy,
where ∑∆xsampling is a sequence of spatial streamwise sam-
pling ratios which results in a) an eddy implementation fol-
lowed by a subsequent deterministic advancement, or b) ex-
ceeding a pre-defined advancement threshold, thus trigger-
ing a deterministic advancement.

The ODT model implementation in a wire-plate ESP is
shown in Figure 1. It shows an eddy taking place at a lo-
cation xeddy. Wire-electrodes are located in a periodic array
configuration with a wire-to-wire distance of 2δ . The ODT
line spans the cross-width h of the channel.

The characteristic mapping process of eddy events, the
triplet map function f (y) as in Kerstein (1999), is measure
preserving. For a one velocity component framework, this
implies conservation of mass, momentum and energy in an
incompressible flow. So far, it has only been possible to
consistently state a vector formulation in S-ODT, i.e. with
three velocity components, in the case of boundary layer
type flows, e.g. Ashurst & Kerstein (2005) and Lignell et al.
(2013). Therefore, given that the flow evaluated in this work
is a channel flow type, we only solve for one velocity com-
ponent in our S-ODT formulation, i.e. the streamwise ve-
locity component u.

In contrast with the eddy events, mass conservation in
1-D is trivially satisfied during the deterministic advance-
ment due to the incompressibility condition, i.e. constant

density in the fixed size system. It is also possible to simul-
taneously enforce a balance on the streamwise momentum
flux, which coincides with the kinetic energy of the system,
by solving the conservative form of the streamwise momen-
tum equation,

∂ρu2

∂x
=−∂ p

∂x
+

∂

∂y

(
µ

∂u
∂y

)
(2)

Here, the first term on the right hand side (RHS) of the
equation, ∂ p/∂x, is a mean pressure gradient driving the
flow. The second term on the RHS is the relevant compo-
nent of the viscous stress tensor. ρ and µ symbolize the
constant density and dynamic viscosity of the flow, respec-
tively. Note that the kinematic viscosity is ν = µ/ρ . In
order to model the EHD effects on the flow, the volumet-
ric EBF ρ f ~E would be required, as in Soldati & Banerjee
(1998). In our model, adding an external body force term
in Eq. (2) implies not only the corresponding change in the
momentum of the flow, as in the DNS, but also a change in
the kinetic energy. The latter is not a problem in the DNS
given that mass and energy conservation are enforced by
guaranteeing the zero divergence of the 3-D velocity field.
However, this is not feasible in ODT. In fact, in contrast to
the inherent 3-D boundary value problem (elliptic) solved
by DNS, S-ODT solves a parabolic flow (see Ashurst &
Kerstein (2005) for details). Even solving a 2-D divergence
condition induces an elliptic character on the flow. There-
fore, we can only impose a 1-D zero divergence condition
on the velocity field, i.e., ∂v/∂y = 0, where v is the cross-
wise or wall-normal velocity component. This clarifies the
absence of the advective term in Eq. (2) given that v = 0
everywhere due to the imposed zero gradient condition and
the no-slip condition at the wall.

In order to incorporate the effects of the EBF, we re-
fer to the decomposition of the current density onto its
solenoidal and irrotational components suggested by David-
son & Shaughnessy (1986). The irrotational component
must be neglected in our model, since it is coupled with
the 3-D pressure gradient force acting on the flow. The
solenoidal component should be considered instead, since
it is responsible for the turbulence and vortical interactions.
By approximating the current density vector in the one-way
coupled regime with constant ionic mobility, we can sug-
gest a simple decomposition of the current density vector as
follows,

~J ≈ b~Eρ f = ∇
(
−bφρ f

)
+bφ∇ρ f (3)

This decomposition is based on an algebraic identity and
the relation,

~E =−∇φ (4)

φ is the electrostatic potential in Eq. (4). This decomposi-
tion allows us to find a (non-unique) irrotational component
of ~J, ∇

(
−bφρ f

)
. We interpret the remaining part of ~J as

the solenoidal component, bφ∇ρ f . Note that this decompo-
sition is applicable given that our sole purpose is the sub-
traction of the effects of an (arbitrary) irrotational contribu-
tion to the current, which we have empirically found to be
responsible of negative velocities in the flow, effectively vi-
olating the assumptions required in the S-ODT formulation.
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The streamwise rotational component of ~J, i.e. bφ∂ρ f /∂x,
can be used as a variable body force distribution in Eq. (2).
The wall-normal rotational component, bφ∂ρ f /∂y, should
be used during eddy events to influence the turbulent trans-
port. The latter is done in this work by a mechanism to
model the EHD instability.

The modelling of the EHD instability is based on a pre-
viously published ODT mechanism for affecting the proba-
bility of selection of eddy events, the ODT Darrieus-Landau
instability formulation from Jozefik et al. (2015). This is
a formal pathway in ODT to reproduce the dynamics of
3-D instabilities, which can not be directly captured, but are
responsible for turbulence generation or decay. To repli-
cate the effects of the EHD instability (as in Atten et al.
(1987)), we resort to the generation of an equivalent exter-
nal force utilizing the D’Alembert Principle. The rotational
component of ~J involved in the EBF can be analyzed anal-
ogous to Jozefik et al. (2015), in which there is a gradi-
ent field a = ∂φ/∂y = Ey associated to the force respon-
sible for causing the instability, which acts upon a back-
ground (charge) density field. The change in energy asso-
ciated with the perturbations produced by influence of the
ODT eddies, characterized by f (y) and the kernel function
K(y) = y− f (y), can then be defined as,

EEHD =−K0

l3

∫ y0+l

y0

u[ f (y)]K(y)
j′y[ f (y)]

b
dy (5)

Here, the gradient field is coupled to the charge den-
sity fluctuations, resulting in the evaluation of per-
turbations in the mapped wall-normal current density
j′y[ f (y)]/b = jy[ f (y)]/b− jy/b, where jy is an average of
the current density over the eddy range, l. Note that Eq. (5)
actually refers to an energy flux calculation, as required by
the S-ODT formulation (see Ashurst & Kerstein (2005)).

In order to clarify the appearance of the factor K0/l3,
we refer to the definition of the eddy turnover time in ODT
used in this work, which is equivalent to the one used in
Ashurst & Kerstein (2005). The definition K0 =

∫ y0+l
y0

K2dy
is applied, which is equal to 4l3/27 in the continous limit.
The eddy turnover time τ counterpart in S-ODT is ξ . This is
a turnover characteristic length ξ = ũτ , which is modelled
based on the scaling of the available eddy kinetic energy
flux Q′′, as

Q′′ ∼ 1
2

∫ y0+l
y0

ρuK2dy

τ2 =
ũ2

2

∫ y0+l
y0

ρuK2dy

ξ 2 (6)

In Eq. (6), ũ is the density weighted (Favre-averaged) ve-
locity in the eddy range. Due to our one-component for-
mulation, the available eddy kinetic energy flux is Q′′ = Q,
where Q is the extractable energy flux of the streamwise ve-
locity component, defined according to the spatial formula-
tion from Ashurst & Kerstein (2005). The correct scaling of
the eddy turnover time (see Ashurst & Kerstein (2009) for
details) is then based on Q′′ and a viscous penalty factor for-
mulated entirely on dimensional grounds as Evp ∼ ρ ũν2/l.
Adding our EHD potential energy flux contribution to the
definition of ξ in Ashurst & Kerstein (2009), results in,

ũ2

2

∫ y0+l
y0

ρuK2dy

ξ 2 =
K0

l3

(
K0

l3 Q′′− Z
2

Evp +EEHD

)
(7)

With Eq. (7), it is now easy to see the justification for the
factor K0/l3 in the EEHD term. K0/l3 is just a factor for
consistency in the scaling of EEHD with respect to Q′′.

The eddy rate parameter λ , which deems an eddy as
energetically feasible or not for implementation, is also for-
mulated on the grounds of dimensional analysis, i.e.

λ =
C

l2ξ
(8)

In Equations (7) and (8), C and Z are both constants of pro-
portionality. These are the 2 ODT model parameters recog-
nized in all ODT publications. These parameters must be
calibrated for a specific flow configuration.

CASE SET-UP
In an attempt to replicate the DNS results from Soldati

& Banerjee (1998) with ODT, we utilize the same geometry
and considerations as in the DNS. The investigated flow is
a channel flow forced by a mean pressure gradient, which
is subject to an external electrical body force, in a one-way-
coupling dynamic. That is, the electric field affecting the
flow is always the same, and can be calculated beforehand.
The electric field is generated by an infinitely long linear
array of point electrodes, which operate at a discharge volt-
age φelectrode. The collector plates (walls of the channel)
are grounded at a voltage φplate = 0. The calculation of the
electrostatic field follows the method in Yamamoto (1979)
for the three-wire configuration, which only solves for a
quarter of the region adjacent to an electrode due to sym-
metry. The normal electric field across all symmetry lines
is 0. The tangential electric field at the collector plate is also
0.

The electrostatic fields are calculated by solving the
2-D Maxwell equations in the electroquasistatic approxima-
tion,

∇ ·~E =
ρ f

ε0
(9)

∇ · ~J = 0 (10)

Here, we have used the total 2-D current density definition
in the one-way coupled regime from Eq. (3), b~Eρ f , as well
as the electrostatic potential relation given by Eq. (4). In
Eq. (9), ε0 is the electric permittivity of the vacuum. The
calculations consider the value of ionic mobility for positive
discharge in air, b = 1.4311×10−4m2/(Vs).

As in Yamamoto (1979), the equations are solved with
a Finite Difference (FD) method discretization, where the
linear current density measured at the plate (Iplate) is used
as a stopping criteria for the iteration procedure evaluat-
ing φ and ρ f . All variables obtained at the nodes with
the FD method are interpolated to cell centers in the cross-
wise direction in order to use them in the ODT lines. Since
the channel is infinite (periodic) in streamwise direction, a
given discrete section of the channel is reused as many times
as needed during an ODT simulation. Figure 2 shows the
distribution of the electrostatic potential for the high volt-
age case. The required parameters for the calculation of the
electrostatic field can be found in Table 1.

3



11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11)
Southampton, UK, July 30 to August 2, 2019

Figure 2: Distribution of the electrostatic potential in
the ESP for case B. The channel height is 2h= 0.04m.

Table 1: Electrostatic field parameters for the different
cases investigated. The channel height is 2h and the
wire-to-wire distance is 2δ .

Case δ [m] h [m] φelectrode
[V]

φplate
[V]

Iplate
[mA/m]

A 0.0314 0.02 32000 0 0.30

B 0.0314 0.02 42000 0 0.75

The flow simulations can be started once the electro-
static field is computed. ODT model parameters C and Z are
calibrated for the pure incompressible channel flow with-
out EHD effects (case 0 in Table 2), and are expected to
remain fixed afterwards for the evaluation of the low and
high voltage cases (A and B, respectively, as in Tables 1
and 2). An exception to this rule will be discussed after-
wards. Although there are already quantitative differences
in the channel flow calibration case without EHD effects
(not shown here), we choose the parameter values C = 1.5
and Z = 100 as those who are able to provide a good qualita-
tive agreement with the incompressible mean velocity pro-
files of the pure channel flow. ODT simulations require, ad-
ditionally, the information regarding the Kolmogorov length
scale η and a cutoff length scale as an input for the assumed
PDF of eddy sizes, as detailed by Lignell et al. (2013). The
cutoff length scale, Lmax, is in this case the characteristic
length of the channel, i.e. half of the channel width. The
simulations shown in this work were run with a dynamic
mesh adaption procedure, as in Lignell et al. (2013). The
deterministic advancement between eddy events in ODT is
achieved by solving Eq. (2) with the added streamwise ro-
tational current density term φ∂ρ f /∂x. Note that this is
a quadratic PDE for u, which is solved using an iterative
method for the calculation of the square root of u2. The pa-
rameters for ODT simulations can be found in Table 2. Air
properties ν = 1.66×10−5m2/s and ρ = 1.38kg/m3 were
used, as in Soldati & Banerjee (1998).

Table 2: Simulation parameters and obtained bulk ve-
locities with fixed and scaled values of ODT parame-
ter C (C0 and Cscal , respectively).

Reτ

(Case)
η

[mm]

∂ p
∂x
[Pa/m]

Ub,DNS
[m/s]

Ub,ODT
C0
[m/s]

Ub,ODT
Cscal
[m/s]

108 (0) 0.185 -0.555 1.16 1.29 1.29

108 (A) 0.185 -0.555 1.19 1.34 1.37

108 (B) 0.185 -0.555 1.23 1.44 1.56

EHD EFFECTS ON A LOW REYNOLDS CHAN-
NEL FLOW

For EBFs which are independent of the flow whilst
being functions of space and time, the predominant char-
acteristic is the induction of mean flows, with their own
eddy structures and oscillations, as detailed by Hunt (1995).
This translates directly into a drag increase or reduction.
Here, we analyze the changes in drag by analyzing both the
mean velocity profiles and the Reynolds stress as shown in
Figures 3a and 3b, respectively. Note that the cross-wise
Reynolds stress in ODT is calculated following Kerstein
(1999). For the same incompressible channel flow ODT
model parameters C and Z, we observe an enhancement of
the mean velocity gradient in the outer layer and a subse-
quent increase in the bulk velocity, as shown in Table 2 and
seen in Figure 3a. We also note the increased probability
of eddy events happening close to the electrodes due to the
influence of the EBF, as seen in Figure 4. We note, though,
that the difference between cases 0 and A is almost negligi-
ble in terms of the mean velocity profile for ODT. Also, the
trends obtained in the Reynolds’ stress are inverted in com-
parison to the results obtained in the DNS, as seen in Figure
3b. In ODT, the Reynolds stress increases with the mag-
nitude of the EBF, while the opposite happens in the DNS.
In fact, Soldati & Banerjee (1998) attribute the decrease of
the Reynolds stress with the drag reduction experienced at
larger EBF.

As detailed by Hunt (1995), changes in drag could be
mainly attributed to the EBF induced mean flows. ODT is
not able to capture coherent information that may lead to
the induction of mean flows due to its reduced dimension-
ality, see Kerstein (1999). Therefore, we look for a way to
influence the drag by changing the ODT C parameter. This
could be similar to the C parameter dependency in ODT for
low Reynolds number flows, where lower values of C re-
produce more laminar flows (C = 0 reproduces a laminar
channel flow). With this consideration, we treat the drag
reduction as a laminarization of the flow, and thus, as a re-
duction in the C parameter, which should be a function of
the EBF magnitude.

Reviewing the non-dimensional momentum equa-
tion detailed in Davidson & Shaughnessy (1986),
we note that the EBF present in the momentum
equation is non-dimensionalized by the parameter
Fr−2

EHD = NEHD = Iplate/
(

ρbU2
b,0

)
, i.e. an electric Froude

number. We have empirically found, that an appropriate
qualitative behavior for the drag reduction and the Reynolds
stress close to the wall, can be found by scaling the C
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(a) (b)

Figure 3: Normalized mean velocity profile and
Reynolds stress obtained with the ODT model param-
eters C = 1.5 and Z = 100.

(a) (b)

Figure 4: Eddy event distribution in the plate ESP. (a)
Case 0, no EBF. (b) Case B, large EBF. The differ-
ent colors in the plots indicate the number of events.
The intersection of the white dashed lines indicate the
presence of the electrodes.

parameter as a direct function of NEHD,

Cscal =C0

(
1− 4

27
NEHD

)
(11)

The factor 4
27 appears here again, as in Eq. (7), indicat-

ing that C may be related to some energy contribution in
the flow. Since C is related to the turbulence intensity, we
hypothesize then that this modification of C may account
for the missing mean kinetic energy introduced by the large
scale structures (see mean kinetic energy equation in David-
son & Shaughnessy (1986)), which results in the noted re-
duction of the drag. Given the net cancellation effect of
the EBF in the streamwise direction for a fully developed
and statistically homogeneous flow, there is no direct way in
ODT to feed this energy into the system, given our restraint
regarding the 1-D (trivial) divergence condition, instead of
the 2-D (or 3-D) velocity divergence condition, which is
characteristic of an elliptic flow. We note that Eq. (11)
might produce negative C values for sufficiently high NEHD.
This sets a limit for the S-ODT parabolic treatment, beyond
which the solutions become indistinguishable from the pure
still (no mean flow) EHD solution, given the complete ab-
sence of turbulent transport (eddy events). Using the sug-
gested scaling, we can obtain a better distinction between
cases 0 and A in the mean velocity profiles, while also ob-
taining the same DNS trends in the Reynolds stress close to
the wall. For NEHD,A ≈ 0.91 we obtain Cscal,A ≈ 1.3 and
for NEHD,B ≈ 2.28 we obtain Cscal,B ≈ 1. Despite the im-
provement of the behavior close to the wall, the qualitative
disagreement of the Reynolds stress in the outer layer still
persists. See Figures 5a and 5b for details.

(a) (b)

Figure 5: Normalized mean velocity profile and
Reynolds stress obtained with the ODT model param-
eter Z = 100 and the C parameter scaled according to
Eq. (11).

Figure 6a shows the non-dimensional mean shear stress
obtained with the scaled C parameter values in the low and
high NEHD cases. We note that ODT is able to reproduce
the increase in the mean velocity gradient in the buffer layer
for increasing magnitudes of the EBF. Although the trends
are different than in the DNS, we note that the increase in
the mean velocity gradient up to a position y+ ∼ 30 is con-
trasted with the decrease in the Reynolds shear stress. This
is a feature reproduced in ODT, which would not be attain-
able with the classical Boussinesq turbulent viscosity ap-
proach.

In order to analyze the RMS velocity profiles and part
of the TKE budgets, we perform a triple decomposition of
the velocity field as in Soldati & Banerjee (1998),

u(x,y,n) = u(y)+ 〈u〉(x,y)+u′(x,y,n) (12)

Here, u is the average achieving the fully developed con-
dition of the velocity field and 〈u〉 is an ensemble average
corresponding to a periodic position n, i.e. our equivalent
to the phase average in Soldati & Banerjee (1998). We note
that, although 〈v〉 6= 0 in the DNS, our uncorrelated ensem-
ble average produces 〈v〉= 0 and therefore we are unable to
analyze organized motions of the non-streamwise velocity
components (plus our inability to obtain a w velocity com-
ponent). We also define û(x,y) = 〈u〉(x,y)−u(y) as in the
DNS. We note, that û = 0 and ûû 6= 0. Using these defini-
tions, we show in Figure 6b the RMS streamwise velocity
profiles. We note that between cases 0 and A, the stream-
wise turbulence intensity has approximately the same mag-
nitude in ODT close to the wall, departing towards a re-
duced turbulence intensity away from the wall in case A, as
in the DNS. For case B, we note that the turbulence inten-
sity is increased near and away from the wall in comparison
to cases 0 and A. A drop in turbulence intensities only takes
place very close to the centerline region, unlike in the DNS,
where an earlier decrease in the outer layer is observed. We
focus here again, on the behavior close to the wall, due to
the inability of ODT to capture most of the coherent, large
scale organized motion.

Finally, we show in Figure 7 the TKE production and
dissipation budgets, P and D, respectively. The TKE pro-
duction is split into a mean flow gradient TKE term (classi-
cal term) and an organized flow gradient TKE term, PEHD
as in Soldati & Banerjee (1998). For the small scale dy-
namics, we obtain a similar behavior in ODT for the TKE
production budget, but we miss the organized PEHD budget
term completely. Due to this reason, most of the dissipa-
tion close to the wall, originated by this large scale motion
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(a) (b)

Figure 6: Normalized mean shear stress and stream-
wise RMS velocity profile obtained with scaled ODT
C parameter values.

Figure 7: TKE production (P), dissipation (D), and
EHD production (PEHD) budgets. The left figure
shows the DNS data for case 0 (black line) and case B
(green line). The right figure shows the ODT results.

and dissipated at a different, larger scale (see Zhao & Wang
(2017) for details), can not be matched by ODT. However,
in general, we notice the characteristic increase in produc-
tion and dissipation for the increased EBF.

CONCLUSIONS AND OUTLOOK
The effects of 2-D electrostatic fields on a low

Reynolds channel flow were investigated. Although this
work is the first step towards an ODT model formulation ca-
pable of accounting for EHD effects, we have corroborated
some qualitative trends with the DNS of Soldati & Banerjee
(1998). First of all, it is important to stress that the problem
sketched in Fig. 1 is inherently three dimensional and a
fully elliptic (boundary value) problem. The resulting flow
shows very significant effects of recirculation, which can
not be captured by our S-ODT parabolic formulation. We
have, nonetheless, stated a formal pathway to mimic certain
flow dynamics, considering only the rotational component
of the electric current density. The latter is responsible for
turbulence generation or decay, as stated by Davidson &
Shaughnessy (1986).

As seen in the ODT and DNS results, an increase in the
EBF results in an overall increase in turbulence, as proved
by the increase in the TKE production and dissipation bud-
gets, shown both in DNS and ODT. We also find a char-
acteristic turbulence increase in ODT in the local zones of
concentrated EBF, as seen by examining the 2-D eddy dis-
tribution in the ESP. Nevertheless, the 2-D EHD effects in
the channel induce mean flow, mostly at the large scales and

in the form of characteristic eddy structures. This increase
in the mean kinetic energy results in a drag reduction, as
well as a local relaminarization of the flow in the outer layer
of the mean velocity profile. The drag reduction effect sym-
bolized by the increase in the bulk velocity was confirmed
with ODT. However, it was not possible to reproduce the
kinetic energy of such characteristic eddy structures, due to
the inability of ODT to capture coherent, large scale mo-
tion. Future studies will consider the cylindrical geometry
of pipe ESPs, where the current density vector is expected
to be fully irrotational. This represents a more dominant
1-D problem, from the body force point of view.
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