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ABSTRACT
The modification of coherent structures in a turbulent

pipe flow was studied as the flow experienced a spatially-
varying pressure gradient. The spatially-varying pressure
gradient was applied through the inclusion of a body of ro-
tation in the center of the pipe. Particle image velocime-
try was carried out in the axial – radial plane for three dif-
ferent bodies of rotation, corresponding to three different
spatially-varying pressure gradient profiles. Coherent struc-
tures were quantified as the flow spatially evolved by com-
puting two-point correlations centered at different axial lo-
cations. A particular contour level of the two-point correla-
tion was chosen and the area within that contour level was
computed. The highly-correlated area within the chosen
contour level was observed to decrease in the accelerating
region of the flow and start to recover back to its initial value
when the bulk flow stopped accelerating. The decrease and
recovery of the correlated area varied with the size of the
body of rotation.

INTRODUCTION
Coherent structures in canonical wall-bounded tur-

bulent flows are commonly used to interpret and un-
derstand turbulent physics (Theodorsen, 1952; Robinson,
1991; Jimenez & Moin, 1991; Adrian et al., 2000). They
inform theories of how turbulence self-sustains (Jimenez &
Moin, 1991), and have acted as building blocks with which
turbulence models can be constructed (Perry & Marušic,
1995; Marusic et al., 2010; McKeon, 2017). Many of
the structures that have been identified have been common
among the three canonical wall-bounded flows (boundary
layers, channels, and pipes) within some variation in the ex-
act wavelength (Monty et al., 2009), allowing for some gen-
eralizations to be made about structures across these three
flows.

When looking towards non-canonical flows, it is there-

fore natural to look to coherent structures to provide a ba-
sis of understanding as well as a potential basis for mod-
els. However, coherent structures are known to change non-
trivially in both size and strength when the flow undergoes
a spatial acceleration. While significant work has looked
at the effect of pressure gradients on the statistics of wall-
bounded turbulent flows, relatively few works have focused
on quantifying the effect on the coherent structures. Early
work on the topic was undertaken by Bradshaw (1967),
who found that large-scale structures increased in strength
in flows with adverse pressure gradients. On the other hand,
Spalart & Coleman (1997) showed that the near-wall streaks
became weaker in flows with strong adverse pressure gradi-
ents, indicating that different scales and different regions of
the flow respond differently to pressure gradients.

More recently, Dixit & Ramesh (2010) showed that
large scales became more diffuse and elongated and had
smaller inclination angles with respect to the wall in a fa-
vorable pressure gradient boundary layer. The study was
carried out for eight pressure gradient conditions spanning
mild to strong. Harun et al. (2013) studied the effect of ad-
verse and favorable pressure gradients on large and small
scales in a turbulent boundary layer. They found that large
scales showed more sensitivity than small scales to pressure
gradients. Both of these studies were carried out using hot
wires in a boundary layer with a constant pressure gradient
along the streamwise extent of the flow within the measure-
ment domain.

Other studies have considered the effect of a spatially-
varying pressure gradient and curvature condition on the
flow field. Bandyopadhyay & Ahmedt (1993) looked at a
sequence of convex and concave geometries as well as the
recovery of the flow from these conditions. They found
that large eddies responded linearly to increasing pressure
gradients, but that the return to equilibrium when the pres-
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Figure 1: A schematic of the experimental set up is shown. Fully-developed turbulent pipe flow parts around a body
of rotation that sits in the center of the pipe.

sure gradient had been withdrawn was nonlinear. Baskaran
et al. (1987) considered the flow over a curved hill and stud-
ied the balance of stress production and dissipation as a re-
sult of the pressure gradient and curvature effects. In these
flows, the pressure gradient and curvature condition were
allowed to vary in the streamwise direction, creating poten-
tially dynamic evolution effects as the velocity field con-
vected through the variable geometry.

In this study, we focus on the effect of a spatially-
varying pressure gradient and curvature condition on the
strength and size of coherent structures in a turbulent pipe
flow. The experimental set up including development of the
turbulent pipe flow, creation of the spatially-varying pres-
sure gradient, and measurement of the velocity field using
particle image velocimetry are desribed in the experimental
methods section. In the results section, two-point correla-
tions are used to deduce the region of strong correlation in
the flow field. The area of the strongly-correlated region
within a particular contour level is computed and compared
as the center point of the two-point correlation is varied and
as the size of the body of rotation is changed. Finally, con-
clusions and a discussion of future work are included in the
final section.

EXPERIMENTAL METHOD
The experiment was performed in a recirculating water

pipe facility at Princeton University. The water pipe had a
diameter of 1.5 ± 0.001 in. A development length of 200
pipe diameters allowed for a fully-developed flow prior to
the start of the test section. The facility was capable of a
range of Reynolds numbers, 12,500 < ReD < 156,000, and
300 < Reτ < 3,550, where ReD = UBD/ν , Reτ = uτ R/ν

and UB is the bulk axial velocity, uτ is the friction velocity,
D is the diameter of the pipe, R is the radius of the pipe, and
ν is the kinematic viscosity. The experiments shown here
were run at ReD = 156,000 and Reτ = 3,550.

The measurement location was 200 pipe diameters
downstream of any pipe bends, such that the inlet flow into
the region of interest was a canonical fully-developed tur-
bulent pipe flow. To create a spatially-varying pressure gra-
dient and curvature condition, a body of rotation was held
in the center of the pipe using a sting. A schematic of the
experiment, showing flow passing by a body of rotation, is
shown in figure 1.

Three distinct bodies of rotation were used to gener-
ate three different pressure gradient conditions. Each body

Figure 2: The body of rotation is shown outside of the
experimental pipe. The sting supporting the body can
be observed.

of rotation had the same basic components: a nose cone,
a center body, and a tail. In each case, the nose cone was
a prolate spheroid, the center body was a cylinder, and the
tail was described by a power law, y∗ = R∗(1− (x∗/L)4),
rotated about the axis y∗ = 0. In the power law, R∗ is the
maximum radius of the body of rotation and L is the length
of the tail component of the body. The difference between
the three bodies lay in the radius of the body. The smallest
body had a maximum radius of 0.25 in, and filled 1/9 of the
area of the pipe. The medium body had a maximum radius
of 0.35 in and filled 2/9 of the area of the pipe. The large
body had a maximum radius of 0.43 and filled 1/3 of the
area of the pipe. An image of the body of rotation held up
by its sting and encased in part of the pipe is shown in figure
2. The body of rotation in the full setup is shown in figure
3.

The body shape was chosen with a few design prin-
ciples in mind. The body was axisymmetric to create a
pressure gradient that was varying in the axial direction but
not in the azimuthal direction. The nose of the body grew
smoothly from a zero-diameter to a maximum diameter to
create a smoothly-varying pressure gradient profile. A pro-
late spheroid was used for the nose as a relatively canonical
shape, as it represents an ellipse rotated about its long axis.
The center body was chosen to be a cylinder to create a
region with no axial variation of the pressure gradient. In
this region, the flow is able to recover, albeit in an annular
geometry. The tail was described by a power law in order
to minimize the separation of the flow (Moonesun et al.,
2017). The diameters of the three bodies were chosen such
that they filled 1/9, 2/9, and 1/3 of the area of the pipe re-
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Figure 3: An image of the experimental set up is shown with the body of rotation inside of the glass pipe. The PIV
laser sheet is drawn in, and the two PIV cameras are visible. A rectangular box filled with water encasing the pipe
is also observable, used to improve the image quality near the walls.

spectively, to generate a wide variety of pressure gradients.
The large and small bodies of rotation are shown side-by-
side in figure 4. The nose, center body, and tail are visible.
The body of revolution was held in the center of the pipe
using a sting, with a NACA 0015 shape.

Figure 4: The large and small bodies of rotation are
shown side-by-side.

Experiments were carried out for each body of rotation
as well as the canonical pipe flow case, in which no body
of rotation was included. The velocity field was measured
using 2D particle image velocimetry (PIV) in the axial –
radial plane. Figure 3 shows the experiment with the PIV
laser sheet indicated. A water-filled box was sealed around
the pipe at the measurement location in order to reduce im-
age distortion near the curved wall of the pipe. A laser light
sheet oriented in the axial – radial plane impinged upon the
water-filled box, into the glass measurement pipe. A polar-
izing filter attached to the camera reduced the effect of laser
reflection in the curved glass surfaces. A 2 × teleconverter
was used to magnify the image, such that the final pixel size
was 1.85δν where δν ≡ ν/uτ . Vector fields were calculated
using DaVis software, with a final interrogation spot size of
55δν and a vector spacing of 27δν .

PIV data was taken in two non-simultaneous experi-
ments to elongate the total field of view. The first set of
experiments were undertaken with a field of view starting
approximately at the tip of the nose of the body of ro-
tation, extending to approximately 2.75 pipe radii down-
stream. Two cameras oriented side-by-side were used to
achieve this field of view. The second set of experiments
were undertaken downstream with a field of view starting
approximately at 2.75 pipe radii downstream of the tip of
the nose of the body of rotation, and extending to approx-
imately 5.75 pipe radii downstream of the tip of the nose
of the body of rotation. Two cameras were again used to
achieve this field of view. Thus, four panels make up the
field of view of the final results: panels one and two were
taken simultaneously and panels three and four were taken
simultaneously.

RESULTS
The flow accelerated as it passed by the nose of the

body of rotation to conserve mass, creating a favorable pres-
sure gradient throughout the flow and curvature effects in
the center of the pipe. The total pressure gradient change
based on the geometric variation and associated accelera-
tion for the three bodies of rotation was calculated using the
acceleration parameter

K(x)≡ ν

U2
b (x)

dUb(x)
dx

, (1)

where Ub(x) = Q/(π(R2 − r(x)2)), Q is the volumetric
flowrate, and r is the local radius of the body of rotation.
The value of the acceleration parameter through the axial
extent of the field of view is shown in figure 5 for each body
of rotation.

The large body’s maximum value of K is more than
three times larger than the maximum value for the small
body, leading to a range of mild to strong pressure gradi-
ent values across the three bodies. The small body provides
a maximum K value that is consistent with the mild pres-
sure gradient used by Harun et al. (2013) and the second
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Figure 5: The pressure gradient parameter, K, for each
body of rotation is shown, computed based on the
bulk flow acceleration required to conserve mass.

pressure gradient of eight (ranked from mild to strong) used
by Dixit & Ramesh (2010) in their sweep of the parameter
space. The large body provides a maximum K value that is
consistent with the seventh pressure gradient of eight used
by Dixit & Ramesh (2010), providing a strong pressure gra-
dient locally.

For the case with the medium body of rotation, the re-
sulting mean velocity and the uu and −uv Reynolds stresses
are shown in figure 6 using contour plots to highlight their
spatial variation. The values are normalized by the bulk
flow in the pipe upstream of the body of rotation, UB. A
more detailed description of the statistical variation is dis-
cussed by Ding et al. (2019). The present study focuses on
the changes of the coherent structures in the flow.

In figure 6, the mean velocity field is observed to
globally accelerate, as is required to conserve mass. The
Reynolds stresses show decay as the flow accelerates past
the nose of the body. This is consistent with previous
findings on the decrease in turbulence intensity in favor-
able pressure gradients (Harun et al., 2013). The Reynolds
stresses show signs of recovery as the flow passes the cylin-
drical center body.

As part of quantifying the change in coherent structures
in the flow, we performed two-point correlations at varying
axial locations and compared the resulting region of coher-
ence across the different bodies of rotation. Two-point cor-
relations were carried out at a fixed height from the wall
y0/R = 0.1 and a set of axial locations x0/R = [0.75,4.5],
using equation 2. The tip of the nose of the body of rotation
defines the zero-point of the axial coordinate.

σuu(x,y) =
1
N

N

∑
t=1

u(x0,y0, t)u(x,y, t), (2)

The velocity field in the two halves of the field of view
(x/R≈ 0−2.75 and x/R≈ 2.75−5.5 respectively) were not
measured simultaneously, and therefore the two-point cor-
relations were calculated separately for the two halves. Fig-
ure 7 shows a visualization of the two-point correlation car-
ried out at four different values of x0 for the medium body
of rotation. A yellow color in the visualization indicates that
the flow is correlated to the central (x0,y0) location, while
green indicates no correlation. The color bars of the four
panels in figure 7 have the same bounds, and make clear that
the strength of the correlation declines as the flow passes the

nose of the body of rotation and then increases again as the
flow passes the cylindrical center body. This is consistent
with the decay and recovery of the Reynolds stresses dis-
cussed above. The black contour in each panel shows the
same value of the two-point correlation, σuu/U2

B = 2.5e−3.

The area within the highlighted contour level was used
to quantify the size and strength of the local coherent struc-
tures. A restriction of this method is that, as the chosen
point x0 nears the edges of the domain, some of the true area
of the structure becomes occluded. This is visualized to a
small degree in figure 7(a) and (d), where parts of the out-
lined region extend outside of the bounds of the figure. To
mitigate this challenge, the two-point correlation was car-
ried out using the same procedure for the canonical turbu-
lent pipe flow and the area within the same contour level
was computed. The area of the correlated region for the
flow with the body of rotation, Aσ , was normalized by the
area of the correlated region for the canonical turbulent pipe
flow, Aσ ,0, at the same (x0,y0) location. Because the struc-
ture in the canonical case also extended out of the figure
when the x0 location was too near the edges, the ratio al-
lowed the data to be meaningful for a larger portion of the
field of view.

Figure 8 shows the normalized area within the given
contour across the three bodies of rotation for a center point
height y0/R = 0.1. There are two lines per body of rota-
tion for the two independent fields of view: the usptream
half and the downstream half. The value of the contour was
chosen as σuu/U2

B = 2.5e− 3. Some artifacts of the lim-
ited field of view remain, particularly at the switch from the
nose to the center body data, but conclusions can still be
deduced.

The area of the correlated region decreases for each
body of rotation as the structures pass the nose of the body
of rotation. Depending on the size of the body, the behavior
for the particular contour level chosen varies significantly.
For the large body, the area of the correlated region is al-
ready less than 50% of the value for the canonical pipe flow
by the time the center point of the two-point correlation en-
ters the field of view, indicating that distortion may begin
upstream of the nose of the body. The decrease in area of
the given contour level continues until the area is less than
3% of the area for the canonical pipe flow, where it remains
between x/R ≈ 2− 4. Just before x/R ≈ 4, recovery be-
comes apparent, continuing until the final area ratio returns
to about 20% of the value for the canonical pipe flow. For
the medium body, the area of the correlated region begins at
about 60% of its canonical value and is observed to decrease
until x/R = 2, at which point the recovery begins immedi-
ately. The rate of recovery appears to pick up near the end,
again near x/R = 4. The final observable value of the ratio
of areas is approximately 50% of the canonical value. For
the small body, the results are less clear. The initial area is
about 70% of the canonical value, and some continued de-
cay is observed up to about x/R = 1.5. However, after this
point, the results show a complex behavior. The area ratio is
observed to vary between about 0.45 and 0.6, showing an in-
crease near the center of the field of view, a decrease around
x/R = 4, and an increase again near x/R = 5. This behav-
ior may indicate a limitation in the analysis method near the
edges of the field of view, or may indicate some nonlinear
behavior of the structure size. Future work is needed to clar-
ify the result for small pressure gradients and curvatures.
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(a)

(b)

(c)

Figure 6: The mean velocity field Ū and Reynolds stresses uu and −uv for the case with the medium body of
rotation. Values are normalized using the bulk velocity upstream of the body of rotation, UB.

(a) (b)

(c) (d)

Figure 7: Two-point correlations at four axial locations for the medium body of rotation. A contour level of the
same value is outlined in black in each panel to aid comparison.
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Figure 8: The area of the two-point correlation within
a specific contour level. The area variation across the
axial extent of the field of view is shown for the case
with the small body of rotation (blue), medium body
of rotation (red), and large body of rotation (black).
The black dashed line indicates the axial location
where the nose transitions to the cylindrical center
body.

CONCLUSIONS
Experiments were undertaken to measure the variation

in the size and strength of coherent structures experiencing
a spatially-varying pressure gradient condition. To achieve
this goal, three bodies of rotation with varying radii (corre-
sponding to a range of mild to strong acceleration param-
eters) were held in the center of a pipe and exposed to an
incoming canonical turbulent pipe flow. The velocity field
was measured using particle image velocimetry as the flow
passed the body.

The mean velocity field was observed to accelerate, as
was required to conserve mass, while the Reynolds stresses
were observed to decay through the bulk acceleration region
and start to recover when the acceleration ceased. Two-
point correlations were calculated at a number of axial lo-
cations and the resulting correlated region was observed to
diminish in strength as the flow passed the nose of the body,
and increase in strength as the flow passed the cylindrical
component of the body.

The change in the two-point correlations was quan-
tified by calculating the area within a fixed contour level
across the axial direction of the flow and across the three
bodies of rotation. The area within a given contour level
was observed to decay for all three conditions, though the
rate and extent of the decay was larger for the larger bodies
of rotation. A clear pattern of decreasing area in the acceler-
ating region and increasing area in the recovery region was
observed for the medium and large bodies, while the small
body showed more complex behavior requiring further in-
quiry.

This work contributes to the goal of quantifying the
continuous deformation of coherent structures when they
are exposed to complex changes of geometry. Future work
will seek to tie these structural changes to the local accel-
eration parameter and bulk flow condition, towards a clear
relationship between the external flow condition and the lo-
cal structural behavior.
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