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ABSTRACT
The drag reduction deterioration by spanwise wall os-

cillation control is explored in this study. When the outer
scale motions are absent from the domain, the optimal wall
oscillation period is fixed in wall units, i.e., T+ ≃ 100, in
perfect agreement with the convection time scale of the
near-wall structures. A set of wall-normal localised exact
coherent states under the modulation of spanwise wall os-
cillation are obtained. The saddle-node point of the bifur-
cation curves move towards higher Reynolds numbers until
T+ ∼ 100, beyond which the solution can not be continued.
The drag reduction of wall oscillation on logarithmic exact
coherent states is negligible at T+ ≃ 100, and this is the
same for logarithmic eddies in long but narrow domains.
However, substantial drag reduction is still achievable for
isolated logarithmic eddies at larger oscillation periods, and
the optimal periods tend to scale in a domain width related
time scale, i.e., Lz/uτ , which is consistent with the burst-
ing period of minimum logarithmic attached eddies, i.e.,
2 ∼ 3Lz/uτ . As the spanwise wall oscillation control only
target eddies at a single period, this might be one reason that
the optimal oscillation period varies with Reynolds number.

INTRODUCTION
Spanwise wall oscillation can significantly reduce tur-

bulent skin-friction (Jung et al., 1992). In this near-wall
control strategy, the wall oscillates with the following span-
wise wall velocity Ww,

Ww = Asin(ωt) = Asin(2πt/T ) , (1)

where, ω (or T ) is the oscillation frequency (or period),
A the amplitude, and t the time. At low Reynolds num-
bers, say Reτ = 200, the drag reduction, DR, defined as the
relative change of skin-friction coefficient between uncon-
trolled and controlled cases, i.e., DR = (C f ,0 −C f )/C f ,0 ×
100, can be as much as 40 at optimal control parameters.
However, this type of near-wall control was found to be less

effective as the increase of Reynolds numbers (Choi et al.,
2002; Touber & Leschziner, 2012; Hurst et al., 2014; Gatti
& Quadrio, 2016).

The drag reduction mechanics is mostly argued to be
the interaction between the Stokes layer induced by the
spanwise wall oscillation and the turbulent coherent struc-
tures. At high Reynolds numbers, large scale motions
(LSMs) and very large scale motions (VLSMs) in the log-
arithmic and outer regions emerge and modulate the near-
wall small scale structures (Hutchins & Marusic, 2007),
thus the near-wall control becomes less effective (Agos-
tini & Leschziner, 2018). Based on this observation, re-
searchers have started to investigate large scale controls
(Abbassi et al., 2017; Yao et al., 2018).

With growing recent evidence supporting Townsend’s
attached eddy hypothesis (Townsend, 1976), it is under-
stood that self-similar coherent structures in the form of
attached eddies in the logarithmic region generate a large
portion of skin-friction at high Reynolds numbers (de Gio-
vanetti et al., 2016), and they are self-sustained at each
length scale (Hwang & Cossu, 2011; Hwang & Bengana,
2016). Therefore, an interesting question is how the near-
wall control modulate these individual eddies? Very re-
cently, Yang et al. (2019) identified a set of exact coherent
states (ECSs), which remarkably resembles Townsend’s in-
dividual attached eddies. These ECSs provide an ideal dy-
namical system for understanding turbulence, as well as its
control (Li & Graham, 2007; Ibrahim et al., 2019). In this
study, we attempt to explore the drag reduction control by
spanwise wall oscillation via this approach, and shed light
on the drag reduction deterioration mechanism.

NUMERICAL SETUP
We run numerical simulations for turbulent channel

flow with constant mass flow rate. To reduce the dimension
of the system, we only consider the lower-half of the chan-
nel, with the symmetry boundary condition applied on the
top, i.e., ∂u/∂y = 0, v = 0, ∂w/∂y = 0 at y = h. The sim-
ulations are run with open source code Diablo (Bewley,
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2014). In this solver, the streamwise and spanwise direc-
tions are discretised using Fourier series with 2/3 dealias-
ing rule, whereas the wall-normal direction is discretised
using second-order central difference. The time integra-
tion is performed semi-implicitly by combining the Crank-
Nicolson method with a third-order Runge-Kutta method.
The Diablo solver is further coupled with the Newton-
Krylov-Hookstep method (Viswanath, 2007; Willis et al.,
2013) to search the ECSs, which are in the form of trav-
elling wave solutions in the present study. The numerical
continuation in the parameter space is performed using a
psudo-arclength algorithm.

To find the attached exact coherent states with span-
wise wall oscillation, the set of ECSs by Yang et al. (2019)
is used as the initial field. In their case, the following shift-
reflect symmetry is applied explicitly to favour ‘sinuous-
mode’ streak instability,

[u,v,w, p](x,y,z) = [u,v,−w, p](x−Lx/2,y,−z). (2)

Under this symmetry, spatial homogeneous spanwise wall
velocity vanishes and the spanwise wall oscillation can not
achieve any control effect. Therefore, the shift-reflect sym-
metry condition (2) is relaxed for the search of ECS in the
presence of flow control. The idea for searching travelling
wave form ECS by Newton-Krylov-Hookstep method lies
in minimising the relative error between an initial state and
the state obtained via first time-stepping the initial state by
an interval Ts, then spatially shifting it backward by Tscx
(here cx is the streamwise convection velocity of ECS). For
ECS searching without control, the choice of Ts is arbitrary.
However, under spanwise wall oscillation control, the flow
shows periodicity due to the presence of periodic wall mo-
tion, thus the time interval needs to satisfy Ts = nT , where n
is an integer number. In the present study, we chose n= 1 or
2, and the psudo-arclength continuation is then performed
by gradually increasing the spanwise wall velocity ampli-
tude A+ at a fixed oscillation period T+. Once the first ECS
with spanwise wall oscillation is obtained, then the parame-
ter continuation in the Reynolds number is performed using
the psudo-arclength algorithm.

Two Reynolds numbers (based on the centreline veloc-
ity of the laminar flow with same mass flow rate, Ucl and the
half channel height, h) are studied for the attached eddies.
One is Re = 23550, corresponding to Reτ = 800 (based on
friction velocity, uτ and the half channel height, h) for a full
simulation, at which Reynolds number Hurst et al. (2014)
has performed a parameter study for large domain spanwise
wall oscillation control. Another one is Re = 55000, which
gives a clear range of logarithmic eddies and the logarith-
mic states are obtained with a eddy viscosity model (Yang
et al., 2019). The effect of the spanwise wall oscillation
amplitude A+ on the drag reduction is monotonic, with a
nearly saturated state for A+ > 12 (Quadrio et al., 2009),
thus all the cases in this study target at A+ ≃ 12. There is
an optimal oscillation period for the control, i.e., T+ ≃ 100,
but much larger oscillation periods are also considered for
the control of logarithmic eddies. Details of the simulation
parameters are listed in tables 1 and 2.

RESULTS AND DISCUSSION
We first show an instantaneous visulisation of the near-

wall streaks at y+ ≃ 15 for cases ‘R’ and ‘F’ in figure 1.

Table 1. Simulation parameters for near-wall (‘W’) and
logarithmic (‘Li’) structures. ‘R’ is reference case, and ‘F’
full simulation with control.

Re (Lx ×Ly ×Lz)/h Cs A+ T+

R 23550 12×1×4 0 0 0

F 23550 12×1×4 0 12 100

W 23550 10×1×0.25 0 12 0 ∼ 310

L1 55000 10×1×0.375 0.30 12 0 ∼ 100

L2 55000 10×1×0.5 0.32 12 0 ∼ 100

L3 55000 10×1×0.75 0.35 12 0 ∼ 100

Table 2. Simulation parameters for wall states.

(Lx ×Ly ×Lz)/h A+ T+

ECS1 0.6×1×0.3 12 0 ∼ 137

ECS2 0.8×1×0.4 12 0 ∼ 117

ECS3 1.2×1×0.6 0 ∼ 12 0 ∼ 79

The half-domain large box simulation at Re = 23550 gives
a friction Reynolds number of Reτ ≃ 800 as in full do-
main simulation (Hurst et al., 2014). It is noticed that at
this Reynolds number, the near-wall and outer structures
are well separated, as can be seen that the near-wall small
streaks are on top of the footprints of the VLSMs. Case
‘F’ with control parameters of A+ ≃ 12, T+ ≃ 100 has a
drag reduction of DR ≃ 25, which is also inline with the
full domain DNS result by Hurst et al. (2014). Two fea-
tures are obvious for the controlled field. First, the near-wall
streaks are tilted in spanwise direction by the Stokes layer at
this particular wall oscillation phase. Second, the near-wall
streaks are significantly smeared by the Stokes layer, while
the footprints of the VLSMs still remain very strong, and to
some extend, almost unchanged.

Figure 1. Streamwise velocity contour in xz plane of y+ ≃
15 for case ‘R’ (top) and case ‘F’ (bottom).

The second feature is even better supported by the
one-dimensional pre-multiplied spanwise spectra of stream-
wise velocity shown in figure 2. Two energetic peaks are
clearly visible: the inner one corresponding to the near-
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wall streaks, the outer one corresponding to the VLSMs,
and the linear ridge in-between corresponding to the loga-
rithm structures. The outer peak penetrates deeply into the
near-wall region, corresponding to the footprint effect. The
spanwise wall oscillation significantly reduces the energy of
the near-wall peak, while the outer peak and its penetration
are only weakly modified. In the following, we focus on the
control effect on near-wall and logarithmic states separately
in scale isolated systems.
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Figure 2. One-dimensional pre-multiplied spanwise spec-
tra of streamwise velocity compared between case ‘R’
(shaded) and case ‘F’ (lines). uτ of the uncontrolled case
is used for both non-dimensionalisation.

Wall states
To study spanwise wall oscillation control on the near-

wall structures only, we performance narrow domain simu-
lations, i.e., case ‘W’ with a series of oscillation periods T+,
at a fixed amplitude A+ ≃ 12. The Reynolds number effect
can be clearly seen in figure 3 with two Reynolds numbers,
i.e., Re = 4725 and 23550 taken from Hurst et al. (2014).
At higher Reynolds number, the overall drag reduction is
lower, with DRmax ≃ 37 at Re = 4725 and DRmax = 28 at
Re = 23550. The optimal oscillation period scaled in inner
units of the uncontrolled case is also lower, with T+

opt ≃ 100
at Re = 4725 and T+

opt ≃ 80 at Re = 23550. However, when
narrow domain is considered for Re = 23550, the optimal
oscillation period moves back to T+

opt ≃ 100 again, per-
fectly in agreement with the low Reynolds number case.
As the near-wall regeneration cycle bursts at a period of
T+ ≃ 200∼ 300 (Flores & Jiménez, 2010), the optimal wall
oscillation period is around the same order of such a burst-
ing period. The narrow domain is only designed for the
structure dynamics analysis, thus the predicted DR value
is not accurate due to its artificial missing of large scale
physics, which might be the reason that we see a big dis-
crepancy in the DR values between narrow domain control
at the high Reynolds number and large domain control at
the low Reynolds number in figure 3.

As the exact coherent states form skeleton of turbu-
lence, we then apply spanwise wall oscillation control on
them. The bifurcation curves for ‘ECS3’ are displayed in
figure 4 for different oscillation amplitudes at T+ ≃ 35
(here the inner units are from the saddle-node point of the
uncontrolled case). Spanwise wall oscillation can signifi-
cantly alter the bifurcation curves, with the effect more ob-
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Figure 3. DR variation against oscillation periods (cases
‘W’). The solid line is polynomial fitting.

vious on the upper branches than the lower ones, as also
being found by Ibrahim et al. (2019) for blowing and suc-
tion control in Couette flow. The ECSs emerge at a crit-
ical Reynolds number via a saddle-node bifurcation, be-
low which no such finite amplitude solution exists. It is
clear that the control increases the critical Reynolds num-
ber, which indicates transition delay, or drag reduction for
turbulence. Higher wall oscillation amplitude A+ can bet-
ter delay transition, and this trend is monotonic as in full
domain DNS (Quadrio et al., 2009).
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Figure 4. Bifurcation curves for ‘ECS3’ at T+ ≃ 35.

The oscillation amplitude A+ ≃ 12 is then chosen to
study the effect of oscillation period T+ for ‘ECS1’,‘ECS2’
and ‘ECS3’. For all the three ECSs, the oscillation period
can only be extended up to T+ ∼ 100, above which the
ECS with such a long period can not be converged. For
T+ < 100, the critical Reynolds number monotonically in-
creases as oscillation period increases. Limited to the T+

parameter range available, the critical Reynolds number re-
versal is not observed yet, but the upper and lower branches
have become very close to each other at the largest T+.
This feature also reveals that the distance in C f between
the upper and lower branches of the uncontrolled case at a
fixed Reynolds number can roughly give an estimation of
the maximum drag reduction achievable. For instance, the
estimated maximum DR values from ‘ECS3’, ‘ECS2’ and
‘ECS1’ are 35%, 25% and 20%, respectively. This is ex-
pected as the contribution to skin-friction from the wall state
decreases as the Reynolds number increases (de Giovanetti
et al., 2016).
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Figure 5. Bifurcation curves at A+ ≃ 12 for (a) ‘ECS3’,
(b) ‘ECS2’ and (c) ‘ECS1’.

The visualisation of ECSs at Lz/h= 0.3 and Lz/h= 0.6
are shown in figure 6 for both uncontrolled and controlled
cases at the lowest saddle-node points, i.e., T+ = 79 for
Lz/h = 0.3 case, and T+ = 102 for Lz/h = 0.6 case. As
can be seen, spanwise wall oscillation does not alter the
general shape of the ECSs, which are always featured by
a streamwise meandering streak flanked by a pair of stag-
gered vortices of alternating signs, forming the regenera-
tion cycle. However, the controlled ECSs are pushed much
further away from the wall compared to their uncontrolled
counterparts, due to the Stokes layer, which is shown in fig-
ure 7(b) for Lz/h = 0.3 case at 8 equally separated phases
during one oscillation period (circles in figure 7(a)). At this
oscillation period, the Stokes layer of the ECS is in good
agreement with the analytical solution of the laminar case.
The unsteady Stokes layer also causes the unsteadiness of
the ECS as expected, and we show the skin-friction varia-
tion for Lz/h = 0.3 case during one oscillation period as an
example. The C f oscillates at twice the frequency of the
wall oscillation. However, this variation is just tiny.

The inner-scaled statistics are shown in figure 8 for
Lz/h = 0.6, 0.4 and 0.3 cases with and without control. A
general view is that, even inner-scaled, the near-wall peaks
of the statistics are shifted away from the wall, and for

Figure 6. Exact coherent states at saddle-node points for
(a,c) Lz/h = 0.3 and (b,d) Lz/h = 0.6: (a,b) uncontrolled
cases; (c,d) controlled cases. The blue and red isosurfaces
indicate u′+ =−2 and λ+

2 =−0.002, respectively.

Figure 7. (a) C f variation during one oscillation period for
Lz/h = 0.3 controlled case; (b) the spanwise wall velocity
profiles at 8 equally separated phases.

Lz/h= 0.3 case, this shifts are ∆y+ ≃ 11 for u+rms, ∆y+ ≃ 10
for v+rms and ∆y+ ≃ 12 for −u′v′

+
. This is quite similar to

the ‘virtual wall’ in blowing and suction control (Chung &
Talha, 2011), but here the ‘virtual wall’ is created by the
Stokes layer.
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Figure 8. Statistics for wall states with control (solid lines)
and without control (dashed lines): (a) U+, (b) u+rms, (c) v+rms
and (d) −u′v′

+
.

Logarithmic States
Spanwise wall oscillation is then applied to the loga-

rithmic exact coherent states at Re = 55000, as identified
by Yang et al. (2019) using over-elevated eddy viscosity.
We extend the inner scale nature of wall states to the log-
arithmic states. The drag reduction results at A+ ≃ 12 and
T+ ≃ 100 are listed in table 3, and a negligible drag reduc-
tion is observed. For ‘ECSL3’ case, there is even a drag
increase. To understand the scaling nature of the logarith-
mic structures, we perform unsteady simulations in long but
narrow domains, shown in table 1.

The logarithmic structures are visualised in figure 9,
which are featured with long streaks (blue) and quasi-

Table 3. Simulation parameters for logarithmic ECSs (up-
per branch) at Re = 55000, A+ ≃ 12, T+ ≃ 100.

(Lx ×Ly ×Lz)/h Cs Reτ DR

ECSL1 0.75×1×0.375 0.30 789 0.5

ECSL2 1.0×1×0.5 0.32 989 2.8

ECSL3 1.5×1×0.75 0.35 1415 −0.7

streamwise vortices (red) just as the ECSs. Different os-
cillation periods are considered for each logarithmic struc-
ture. The DR variation for each structure is shown in figure
10. At T+ ≃ 100, drag reduction achievable is negligible
as for the exact coherent states. However, a substantial drag
reduction is still achievable for T+ ≫ 100. The optimal
oscillation periods are not scaled in inner units, but in a do-
main width related time scale Lz/uτ , which is around the
same order of the bursting period of the logarithmic struc-
tures, i.e., 2 ∼ 3Lz/uτ (Hwang & Bengana, 2016). We note
that the eddy viscosity approach used here is mainly to re-
place the effect of near-wall small eddies. The DR value
from such a simple eddy viscosity model would definitely
be less accurate compared to DNS result. Therefore, it is to
be further investigated whether the same effect can also be
observed in full DNS.

Figure 9. Logarithmic structures: top to bottom are ‘L1’,
‘L2’ and ‘L3’. The blue and red isosurfaces indicate u′+ =

−2 and v′ = 1.5, respectively.

CONCLUDING REMARKS
Spanwise wall oscillation is applied to isolated wall

and logarithmic structures and their corresponding exact co-
herent states at high Reynolds numbers. Substantial drag re-
duction is achieved for both sates, but with different optimal
oscillation periods. The wall states are optimally controlled
at T+

opt ≃ 100, but the logarithmic states at Topt ≃ Lz/uτ ,
which are around the same order of the bursting periods
of these states. This might make spanwise wall oscillation
control challenging at high Reynolds number, since it only
targets a single period. Recently, for DNS in a large domain,
Yao et al. (2018) showed logarithmic structures can be con-
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Figure 10. DR variation against oscillation periods at
A+ ≃ 12 for logarithmic structures: (a) inner and (b) burst-
ing scaling. Solid lines are polynomial fitting.

trolled via spanwise opposed wall-jet forcing for drag re-
duction, and this result is consistent with the control of iso-
lated logarithmic states in the present study. This is encour-
aging as near-wall based control might achieve a certain
drag reduction at very high Reynolds numbers (Iwamoto
et al., 2005). Of course, in real situation, a hierarchy of
attached eddies co-exist in the domain, and their non-linear
interaction is not negligible (de Giovanetti et al., 2016).

Another interesting finding probably is the drag reduc-
tion mechanism. What we have observed from the spanwise
wall oscillation modulated ECSs is a wall-normal displace-
ment of the coherent states, while the general feature of the
state is still well maintained. A thicker sublayer is thus cre-
ated, which is very similar to the so-called ‘virtual wall’ in
blowing and suction control (Chung & Talha, 2011). It is
worth further exploring what happens to the ECS at large
oscillation periods (T+ ≫ 100) in the future.
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