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ABSTRACT
A three-dimensional implicit Large-Eddy simulation is

presented for a cylindrical density current at a Reynolds
number equal to 136,000, under the Boussinesq approxi-
mation for small density difference. The aim is to assess
the ability of an implicit Spectral Vanishing Viscosity ap-
proach to numerically reproduce the main features of an ax-
isymmetric release of heavy fluid into a light ambient fluid
at high Reynolds numbers. Comparisons are made with ex-
perimental data and with numerical data at lower Reynolds
numbers. It is found that the proposed approach is able to
provide a detailed description of the structure of the current,
information about the large-scale coherent structures, and to
predict the evolution of the front velocity over the different
stages of the current propagation.

INTRODUCTION
Turbulent density currents are produced when a finite

volume of heavy fluid is released from a source into an am-
bient fluid with a lower density. They are very common in
nature with seafloor turbidity currents, avalanches, haboobs,
river plumes, pyroclastic and lava flows. Density currents
have been studied in great details, using a combination of
laboratory experiments, mathematical models, and numeri-
cal simulations. They exhibit a complex dynamic with the
presence of the well-known lobe-and-cleft patterns at the
head of the current followed by a region of mixing with in-
tense Kelvin-Helmholtz vortices. Understanding the physi-
cal mechanism associated with these currents as well as the
correct prediction of their main features are of great impor-
tance for practical and theoretical purposes. Studying den-
sity currents in nature is very challenging and costly due
to their complexity and size. As a result, density currents
are investigated in simplified and idealised configurations.
The most studied one is the horizontal channelized lock-
exchange configuration in which the heavy fluid is enclosed
in a small reservoir separated by a gate from the light ambi-
ent fluid in a channel set-up. The dynamics of channelized
density currents are reasonably well understood with a large

number of experimental, numerical and theoretical studies
as well as predictive models (see Simpson (1999); Meiburg
& Kneller (2010) for a comprehensive overview of the study
of density currents).

Recently, scale-resolving simulations (in which (most
of) the turbulent scales are resolved) have been performed
in two and three dimensions to explore the dynamics of
density currents. Most of these simulations are dealing
with channelized lock-exchange configuration (Härtel et al.,
2000b,a; Necker et al., 2002; Espath et al., 2014) but some
of them are also focusing on axisymmetric configurations
however at relatively low Reynolds numbers (Cantero et al.,
2006, 2007a; Zgheib et al., 2015). Scale-resolving simula-
tions of lock-exchange density currents can be used to ac-
curately estimate the temporal evolution of global param-
eters such as the front location and front velocity as well
as the height of the current. Detailed information about the
lobe-and-cleft structures and the deposition map can also be
obtained from scale-resolving simulations, data which are
almost impossible to get from experiments.

Direct Numerical Simulation (DNS) is probably the
best option to study numerically density currents because
of its ability to resolve all the scales of the flow (without
any modelling). Unfortunately, it is not yet reasonable to
perform DNS of density currents at high Reynolds num-
bers (of the order of 105 and more), even with the most
powerful supercomputers available for academic research.
As a result, Large Eddy Simulations (LES), for which only
the smallest scales of the flow are modelled, is a more suit-
able strategy. Interestingly, only few density currents stud-
ies are based on LES, even if LES is now a widely used
technique in academia and industry for the study of turbu-
lent flows at Reynolds numbers representative of real-life
applications (see Constantinescu (2014) for an extensive re-
view of LES of lock-exchange gravity currents). The vast
majority of LES for density currents are focusing on chan-
nelized lock-exchange configuration and are based on ex-
plicit models to deal with the unresolved sub-grid scales.
To the best of our knowledge, there is no published work
of LES of density currents generated with cylindrical re-
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leases. In the present study, the axisymmetric collapse of
a heavy fluid column in a lighter environment for a high
Reynolds number equal to 136,000 is studied by means of
Implicit Large Eddy Simulation using the Boussinesq ap-
proximation for small density difference. This configura-
tion has been chosen because experimental data are avail-
able for this Reynolds number (Hallworth et al., 2001). The
present study is based on an original approach based on a
strategy that uses the numerical error of high-order implicit
finite-difference scheme to introduce dissipation at small
scales. It means that it is not necessary to use an explicit
model for the unresolved sub-grid scales (there is no extra
cost associated with the proposed approach). This strategy
has been applied successfully to scale-resolving simulations
of homogeneous isotropic turbulence (Dairay et al., 2017),
turbulent jets (Ioannou & Laizet, 2018) and the wake gen-
erated by wind turbines (Deskos et al., 2019). The aim here
is to assess the ability of this approach to reproduce at a
reasonable cost the complexity of an axisymmetric density
current at high Reynolds number, with some comparisons
with experimental data. The selected experimental case (S3
in Hallworth et al. (2001)) was performed by quickly re-
leasing a given cylindrical volume of dense salt water at the
centre of a circular tank containing fresh ambient water.

NUMERICAL METHODOLOGY
To describe the evolution of density currents, the three-

dimensional incompressible Navier-Stokes equations, cou-
pled with a scalar transport equation, are used under the
Boussinesq approximation. The governing equations read

∂ui
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where ui is the velocity field, p the pressure, θ the scalar
concentration, δi j the Kronecker delta, Re the Reynolds
number and Sc the Schmidt number equal to 1. All quan-
tities describe the evolution of large scales of motion and
buoyancy and are formally filtered by the computational
mesh.

To describe the problem a single characteristic velocity
scale (i.e. the buoyancy velocity) can be estimated assum-
ing an inviscid energy budget, while the reference length
scale is arbitrary chosen as the height of the heavy fluid col-
umn L̃2,b (see Fig. 3a for a visualisation of the flow configu-
ration). Henceforth, the bulk Reynolds number is estimated
as Re = (g′L̃3

2,b)
0.5/ν , where g′ represents the reduced den-

sity and ν the kinematic viscosity. In the following, L̃2,b
and the buoyancy velocity are used for the normalisation of
all quantities.

The simulation is performed with the open source
flow solver Incompact3d, which is based on a Carte-
sian mesh, finite-difference 6th-order compact schemes
for spatial discretisation and a 3rd-order Adams-Bashforth
scheme for time-advancement. The main originality of
Incompact3d is that the Poisson equation for the in-
compressibility of the velocity field is fully solved in spec-
tral space via the use of relevant 3D Fast Fourier trans-
forms (FFTs). With the help of the concept of modified

Figure 1. 2D Schematic view of the flow configuration.

wavenumber (Lele, 1992), the divergence-free condition is
ensured up to machine accuracy. The pressure mesh is
staggered from the velocity one by half a mesh to avoid
spurious pressure oscillations observed in a fully collo-
cated approach (Laizet & Lamballais, 2009). The sim-
plicity of the mesh allows an easy implementation of a
2D domain decomposition based on pencils (Laizet & Li,
2011). The computational domain is split into a num-
ber of sub-domains (pencils) which are each assigned to
an MPI-process. The derivatives and interpolations in the
x-direction (y-direction, z-direction) are performed in X-
pencils (Y-pencils, Z-pencils), respectively. The 3D FFTs
required by the Poisson solver are also broken down as a se-
ries of 1D FFTs computed in one direction at a time. Global
transpositions to switch from one pencil to another are
performed with the MPI command MPI ALLTOALL(V).
Incompact3d can scale well with hundreds of thousands
MPI-processes for large-scale simulations (Laizet & Li,
2011).

Free-slip boundary conditions are applied for the ve-
locity in the three spatial directions, except at the bottom
wall where a no-slip boundary condition is imposed. Note
that only 1/4 of the cylinder is simulated to save compu-
tational resources. For the scalar field, no-flux conditions
are imposed everywhere. The initial condition is prescribed
with a smooth hyperbolic tangent to avoid discontinuities.
It is noteworthy that we ignore the inner cylinder which is
present in the experimental setup (which results in an ini-
tial condition with 4.6% additional mass). High amplitude
O(15%) white noise is superposed at the lock position to
accelerate the breakdown to turbulence and to mimic the
strong disturbance introduced by the removal of the lock in
the experimental setup. A 2D schematic view of the flow
configuration can be seen in figure 1. The simulation is
performed in a dimensionless domain of L1 × L2 × L3 =
17× 1.6× 17, with the scalar field prescribed radially for
a quarter of cylinder with L1,b × L2,b = 2.2× 1. The ex-
periment length L1,3 = 14.2 in Hallworth et al. (2001) was
increased to accommodate for an even longer spatiotempo-
ral evolution of the current. The domain is discretised with
n1×n2×n3 = 901×389×901 uniform mesh nodes (∼ 316
million mesh nodes) and the time step of ∆t = 0.00024 is
kept constant throughout the simulation.

Implicit LES
The proposed scale-resolving simulation is based on

a strategy that introduces a targeted numerical dissipation
at the small scales through the discretisation of the second
derivatives of the viscous terms Lamballais et al. (2011);
Dairay et al. (2017). It was shown in these studies that it is
possible to design a 6th-order finite-difference scheme in or-
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der to mimic a subgrid-scale model based on the concept of
Spectral Vanishing Viscosity (SVV, see for instance Kara-
manos & Karniadakis (2000)), at no extra computational
cost.

In Incompact3d, the computation of second deriva-
tives is achieved thanks to the following scheme

α f ′′i−1 + f ′′i +α f ′′i+1 =a
fi+1− fi + fi−1

2∆x2 +

b
fi+2−2 fi + fi−2

4∆x2 +

c
fi+3−2 fi + fi−3

9∆x2 +

d
fi+4−2 fi + fi−4

16∆x2 . (2)

In the framework of a Fourier analysis, it is well known
that a modified square wavenumber k

′′
can be related to this

scheme with

k
′′
∆x2 =

2a [1− cos(k∆x)]+ b
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For a conventional 6th-order order scheme, the coefficients
of the discretisation are α = 2/11, a = 12/11, b = 3/11,
c = d = 0. Using two conditions on the modified square
wavenumber k

′′
, one at the cutoff wavenumber (kc = π/δx

with k
′′ |π = k

′′
c) and one at an intermediate scale 2π/3

(k
′′ |2π/3 with k

′′ |2π/3 = k
′′
m), the scheme 2 can produce the

following set of coefficients
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405k′′c ∆x2−640k′′m∆x2+144

c =− 7695k′′c ∆x2/8+288k′′m∆x2−180k′′c ∆x2k′′m∆x2−2574
405k′′c ∆x2−640k′′m∆x2+144

d =
198k′′c ∆x2+128k′′m∆x2−40k′′c ∆x2k′′m∆x2−736

405k′′c ∆x2−640k′′m∆x2+144 . (4)

As explained in Lamballais et al. (2011), the extra-
dissipation introduced by this discrete viscous operator can
be interpreted as a spectral viscosity expressed as

ν
′′
s = ν

k
′′ − k2

k2 . (5)

Using this expression, it is quite straightforward to adjust
the coefficient in order to mimic the following SVV kernel

νs(k) = ν0 exp
(
−
(

kc− k
0.3kc− k

))
(6)

where kc is the cutoff wave number of the computational
mesh and ν0 an artificial viscosity that controls the numer-
ical extra-dissipation. For the present study, the two con-
ditions ν

′′
s (kc) = νs(k) and ν

′′
s (2kc/3) = νs(2k/3) are im-

posed, with ν0/ν = 450. This value has been obtained em-
pirically after several preliminary simulations.

RESULTS
Figure 2 presents instantaneous visualisations of the

scalar θ at t = 6.4 and t = 15.2. When the lock is removed,
the heavy fluid begins to collapse and spreads out radially
into the light ambient fluid. The head of the current is char-
acterised by rolled up vortices. When the current start to
slow down, the well-known lobe-and-cleft structures start
to emerge, however, because the Reynolds number is very
high, they are quite small, in very large numbers and it is
quite challenging to clearly identify them. It was already
reported in Espath et al. (2014) that lobe-and-cleft struc-
tures reduce in size when the Reynolds number is increased.
They are also not as well organised as for lower Reynolds
number, suggesting a strong influence of the Reynolds num-
ber for this type of flow. Note that the maximum height of
the current is located close to the head, where the current is
slightly lifted away from the bottom wall and, as a conse-
quence of the no-slip condition, where a layer of light ambi-
ent fluid penetrates below the heavy fluid. After some time,
the head of the current progressively loses energy. These
observations are consistent with the field and experimental
data reported in Patterson et al. (2006) for a similar configu-
ration. It is also important to point out that it is not possible
to identify numerical spurious oscillations which seem to
suggest that the present implicit LES strategy is able to cap-
ture correctly the main flow features of density currents at
high Reynolds numbers.

Figure 3 presents azimuthal averaged maps as function
of the vertical and radial components of the mean scalar
field, the radial and vertical velocity fields, the turbulent
buoyancy flux (−u′2θ ′) and the turbulent kinetic energy
(u′iu

′
i/2) for t = 6.24 and t = 15.36. First of all, it can clearly

be seen that the maximum height of the current is located
close to the head, where the first large coherent structure is
penetrating into the light ambient fluid. It can also be seen
that the current is quickly dissipating energy when compar-
ing the data between t = 6.24 and t = 15.36. The interface
between the current and the light ambient fluid is charac-
terised by an intense turbulent flux activity first both from
and to the current (at t = 6.24) and then mainly to the cur-
rent (entrainment of ambient fluid in the current) at the top
interface (in red) and from the current at the front interface
(in blue) at t = 15.36. Most of the turbulence activity (high
levels for the kinetic energy) is located at the head of the
current.

Several theoretical and empirical models have been
proposed to predict the evolution of the local front location
and front velocity for axisymmetric density currents and
different phases of spreading have been identified (Huppert
& Simpson, 1980; Cantero et al., 2007b): (i) an acceleration
phase where the current initially at rest reaches its maxi-
mum velocity, (ii) a slumping phase with a nearly constant
front velocity, (iii) an inertial phase for which the buoyancy
driving force is balanced by inertia and during which the
current starts to decelerate, (iv) a viscous phase for which
the buoyancy driving force is balanced by viscosity. Note
that the last two phases are often called self-similar phases
and some models used to predict the evolution of the front
for channelized and axisymmetric currents are based on a
similarity solution of simplified equations of motion.

In the case of axisymmetric currents, it was found that
the front location follows a power-law behaviour of the
form

v f ∝ tα , (7)
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Figure 2. Instantaneous flow visualisations by volume rendering of the scalar field at Re = 136,000, at t = 6.4 (top) and
t = 15.2 (bottom).

with α =−1/2 in the inertial regime and α =−7/8 in the
viscous regime of axisymmetric currents (Huppert & Simp-
son, 1980; Ungarish, 2009; Cantero et al., 2007b). The cor-
responding power-law for the temporal radial evolution of
the front location is given by

r f ∝ t1+α . (8)

The temporal radial evolution of the front location is
presented in figure 4a. A fairly good agreement can be seen
with the experimental data of Hallworth et al. (2001). It is
reasonable to assume that the discrepancy is associated with
the slightly higher initial mass, which generates a higher ac-
celeration in the slumping phase. It can be noted that after
the slumping phase, both experiment and simulation data
follow the same trend. The temporal evolution of the ra-
dial front velocity is presented in figure 4b. It has been
derived from the radial front position of the current. As
expected, the present simulation depicts the expected char-
acteristic phases of spreading: an initial rapid acceleration,
a very short constant-velocity slumping phase, which tran-
sition to a self-similar inertial-buoyant regime in which the
front moves at v f ∝ t−1/2 followed by a viscous regime with
v f ∝ t−7/8. It should also be noted that the agreement with

the experimental data of Hallworth et al. (2001) is quite
good, suggesting that the present implicit LES approach is
suitable for reproducing the behaviour of the front location
of density currents at high Reynolds numbers.

The temporal evolution of the different energy com-
ponents can be extremely helpful to better understand the
flow dynamics of density currents and can also be used to
assess the quality of the present simulation. The concep-
tual framework introduced by Winters et al. (1995); Necker
et al. (2002) is used to study the temporal evolution of the
energy budget, and in particular the potential to kinetic en-
ergy transformation. The kinetic and potential energy are
defined as

Ek =
1
2
〈uiui〉 and Ep = 〈uiθ〉 (9)

where ui (i=1,2,3) are the velocity fields and θ is the scalar
field. 〈•〉 denotes an integral over the full computational
domain. The dissipation rate is defined as

εT =− 1
Re

〈
u j

∂ 2ui

∂x j∂x j

〉
, (10)
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Figure 3. Azimuthal average maps for the scalar field (a/b), the radial velocity field (c/d), the vertical velocity field (e/f), the
turbulent buoyancy flux (g/h) and the turbulent kinetic energy (i/j). Left column corresponds to t = 6.24 and right column to
t = 15.36.
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Figure 4. Temporal evolution of the radially averaged
front position (a) and front velocity (b) as function of time.

and the dissipation rate associated with the scalar field is
defined as

Φ =− 1
ReSc

〈
x2

∂ 2θ

∂xi∂xi

〉
. (11)

In this framework, it can be written that

Ek +Ep +
∫ t

0
(εT +Φ)dτ︸ ︷︷ ︸

EI

= Ep,0, (12)

where Ep,0 is the total energy available in the computational
domain at the start of the simulation.
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Figure 5. Energy budget normalised by the initial poten-
tial energy as function of time.

Figure 5 presents the global energy budget for the
present simulation. It should be noted that the total amount
of energy is not equal to 1 for the duration of the simulation
likely because of the numerical dissipation introduced in
our approach. The temporal evolution of the energy budget
is potentially a good way to quantify the amount of numeri-
cal dissipation introduced in the simulation and this is some-
thing to investigate carefully in future studies. As in simu-
lations at smaller Reynolds numbers (Espath et al., 2014,
2015), a rapid conversion of potential energy into kinetic
energy can be observed with a peak at t ≈ 5 (over 60% of
the total energy is converted into kinetic energy). When the
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current is entering the inertial phase (v f ∝ t−1/2), at t ≈ 9,
there is a rapid increase in physical dissipation, associated
with a rapid decrease of kinetic energy. Towards the end of
the simulation for t > 40, there is still about 20% of kinetic
energy available to the system, suggesting that the current
is still expending radially (in a self-similar fashion).

CONCLUSION
An original scale-resolving simulation of an axisym-

metric density current at a Reynolds number equal to
136,000 was presented in this paper. The proposed numer-
ical strategy is based on the concept of Spectral Vanishing
Viscosity and seems to be perfectly capable of reproduc-
ing (at no extra cost) the main features of density currents
at high Reynolds numbers (for which experimental data are
available). This is a very encouraging result which will pave
the way for future numerical studies of density currents at
realistic Reynolds numbers.
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