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ABSTRACT
An experimental campaign on a bluff body of rectan-

gular cross section, having a side length ratio of 5:1 was
carried out using both particle image velocimetry and hot
wire anemometry at a Reynolds number of 3.04×104. Re-
sults show that under a slight angle of attack, the develop-
ment of unsteadiness in the form of turbulent kinetic energy
is significantly altered. Furthermore, the change in shear
layer trajectory, due to the angle of attack, mainly affects
the initial development of the shear layer instability occur-
ring at the leading edge corner. The consequences of these
changes are naturally amplified and result in a difference in
shear layer thicknesses of approximately a factor 2 on ei-
ther side of the body. It is postulated that this imbalance
of shear flow entering the wake is circularly responsible for
differences found at the leading edge, enforcing the notion
of a globally unstable flowfield.

INTRODUCTION
The existence of multiple time and length scales in the

wake of bluff bodies has been widely documented by inves-
tigators over the past several decades,(Roshko, 1954; Unal
& Rockwell, 1988; Prasad & Williamson, 1997). These ex-
perimental works justify the observation of select natural
phenomena, such as shedding frequencies, with physical
governing laws and dimensional analysis forming a phe-
nomenological body of knowledge upon which the commu-
nity has come to depend. Without these conclusions, the
flow around bluff bodies lacks a sense of scale that is essen-
tial to understanding the intricacy of these flows.

More scarce are the works that focus directly on the
shear layer’s natural development of scales. Relative am-
plitudes of the shear layer momentum thickness to the body
dimension indicate that minute changes to the initial con-
ditions of the shear layer leverage relatively larger differ-
ences in its behavior as the shear layer enters the wake re-
gion. One such change in these initial conditions is the level

of free stream turbulence, which itself is represented by a
range of scales. Increasing fluctuations in the free stream
adds vorticity to the shear layer, manifesting itself through
greater entrainment of ambient fluid on the low speed side
and reattaching the flow to the side surface more rapidly
than in laminar flows, (Bearman & Morel, 1983). However,
even under smooth flow conditions, the shear layer over a
bluff body contains unifying physical details that link small
scales at the leading edge to much larger scales found in the
wake. In fact, it appears that the production of Turbulent Ki-
netic Energy (TKE) necessarily facilitates this migration of
scales from small to large. The observed increase in scale
magnitude, as shown by the continuous expansion of the
shear layer, is initially more rapid than other classical shear
layers.

Two important details separate the bluff body shear
layer from the 2D planar mixing layer. Growth rates in pla-
nar mixing layers exhibit logarithmic or linear trends for
laminar or turbulent mixing layers, respectively, (Winant
& Browand, 1974). In turbulent scenarios, self-similarity
of velocity profiles often assists those attempting to jus-
tify the scales that best describe growth, such as momen-
tum or vorticity thickness. Nevertheless, these shear lay-
ers are a stronger function of the velocity ratio across it
rather than the free stream Reynolds number. To the con-
trary, the bluff body shear layer has been shown to exhibit
higher growth rates (Castro & Haque, 1987), in addition be-
ing non-linearly dependent on free stream Reynolds num-
ber (Prasad & Williamson, 1997; Lander et al., 2018). The
overarching effect of increasing Reynolds number on the
bluff body shear layer is to simultaneously shorten the dis-
tance to transition, reduce the size of shear layer vortices
and increase the shedding frequency. These trends are more
easily seen on rectangular prisms than on circular ones, par-
tially due to the streamline distance between separation and
the wake. Sharp edges at the leading edge on the square ne-
cessitate flow separation independent of the local pressure
gradient. For all rectangular bodies, square and otherwise,
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the shear layer is born at the leading edge in a direction tan-
gential to the front face which, under zero angle of attack,
is perpendicular to the bulk mean flow. This subjects the
shear layer to intense levels of curvature, which relaxes with
increasing side length ratios, (Shimada & Ishihara, 2001).
A common root of these two trends, elevated growth rates
and Reynolds number dependence, is the development of
TKE. The work presented in this paper focuses on the nat-
ural development of TKE for a shear layer over a 2D prism
having side length ratios L/h = 5 at a fixed Reynolds num-
ber, Reh = 3.04×104. The following sections aim to move
toward a universal description of the flow by providing a
physical link between activity at or near the front face of
the body, and activity in the wake.

EXPERIMENTS
A rectangular prism was fabricated at Rensselaer Poly-

technic Institute (RPI). The model was machined from alu-
minum, with final dimensions of L = 254mm, h = 50.8mm
and a span of w = 508mm. The model was mounted on a
circular shaft between end-plates that allowed the model to
change its inclination angle relative to the oncoming wind.
End-plates extended approximately 14h upstream and 20h
downstream of the model’s rotational axis. The test rig, in-
cluding the model along with end-plates, was installed in
the Large Subsonic Wind Tunnel at the Center for Flow
Physics and Control (CeFPaC) at RPI.

The wind tunnel itself is a blow-down type with two
centrifugal fans powered by a 100hp motor. A large settling
chamber houses a honeycomb and a series of screens with
decreasing grid size, which act to break up larger turbu-
lent eddies and distribute the flow uniformly before the flow
is accelerated through the contraction into the test section.
The contraction has an area reduction ratio of 9 : 1 with the
test section having dimensions of height, width, and length
of 0.8m, 0.8m, and 5.0m, respectively. In the empty tun-
nel, the uniformity of the mean flow across the middle 0.5m
of the tunnel is better than 0.1%, with lower velocities in
regions close to the walls. Over the range of wind speeds
used for testing, the longitudinal turbulence intensity was
measured to be less than 0.25%. Tests were carried out at a
range of Reynolds numbers varying between 1.34× 104 to
1.18× 105 by changing the speeds, U∞ although only one
Reynolds number is reported here for brevity. The Reynolds
number in this case is based on the dimension of the model
height, the freestream velocity and the kinematic viscosity
of the air in the tunnel, Reh = U∞h/ν . The blockage ratio
under orthogonal configurations was 6.2%.

In order to support a high level of spatial resolution us-
ing Particle Image Velocimetery (PIV ), multiple Fields of
View (FOV s) were acquired. One FOV encompassed the
entire body length using a 35 mm lens. The other used a
200 mm lens and zoomed into the region near the leading
ledge. Each FOV was investigated using two-component
PIV . The camera was a LaVision Imager LX camera, with
2 MPx resolution. The flow was illuminated with a New
Wave Solo PIV 120mJ/pulse per frame Nd-YAG (532µm)
dual-head laser. The timing of the system allowed sampling
at approximately 15 Hz and in all cases the convergence of
turbulent statistics was satisfied by acquiring 1000 image
pairs. Vector fields were calculated using sequential cross-
correlations of the image pairs. For both camera setups, a
multipass processing algorithm was implemented through
LaVision software. For the smaller FOV the first pass used

a 64×64px interrogation window, while the secondary and
final passes used a 32× 32px, each with a 50% overlap.
The resulting vector fields had a spatial resolution of 5.45
vectors per millimeter. This meant that each FOV corre-
sponded to a physical domain of 0.35h× 0.88h or a total
of 279.4 vectors per body height. The larger FOV used a
48×48px interrogation window with a 50% overlap, while
the secondary and final passes used a 24× 24px, with a
75% overlap. The resulting vector fields there had a spatial
resolution of 0.9 vectors per millimeter.

Additional point measurements in the flow were car-
ried out using a Dantec 55P11 single hot wire probe. The
wire was individually calibrated over a wider range of ve-
locities than those analyzed here and mounted on its own
traverse system located beneath the wind tunnel along the
centerline of the model. The traverses had a repeatability
of 5 µm in both streamwise and vertical coordinates. The
probe was sampled at 40 kHz for 60 seconds and stationed
at locations along the time-averaged shear layer, as deter-
mined from the results of the processed PIV data. The pro-
cedure to locate the hot wire involved identifying the origin
(at the leading edge corner) and using the topology of the
reconstructed PIV field to get a series of target locations in
the coordinates of the PIV .

RESULTS
Figure 1 shows the time-averaged streamlines, ob-

tained from PIV measurements, over the model at α = 0◦

and 5◦. For both cases, the streamlines show the large areas
of recirculating flow alongside the body. In figure 1a the
dividing streamline on the lateral sides of the body is co-
linear with the time-averaged shear layer position, a point
that will be addressed in subsequent paragraphs. In figure
1a, at α = 0◦ where the data on upper and lower halves
are mirrored, the recirculation area extends over most of the
body terminating at x∗ = 4.4 ( ∗ notation is used for non-
dimensional parameters that use the body height h and/or
freestream velocity U∞). When the angle of attack is in-
creased to α = 5◦ as in figure 1b, the flow field over the
model is vastly different on either side. On the pressure
side, the reattachment length is reduced approximately by
a factor 2, whereas on the suction side, the flow is com-
pletely separated and does not reattach, resembling the flow
of bluffer bodies whose L/h ratio is less than approximately
3. In each of these scenarios the shear layer is curved, with
a radius of curvature that continuously relaxes with down-
stream distance and the streamlines fall into alignment with
the mean flow.

Under these flow conditions, the flow transitions to tur-
bulence within the shear layer. The work recently pub-
lished by Lander et al. (2018) has shown that the observed
frequency of instability waves are of a Kelvin-Helmholtz
type mechanism. The frequency behavior with respect to a
changing Reynolds number is balanced by the correspond-
ing momentum thickness and velocity ratio across the shear
layer at the transition point. The shear layer position and
transition point itself are defined using the maxima of TKE
in the flowfield. The same definitions are employed here us-
ing a two dimensional representation, Ẽ = 1/2(u

′
u
′
+ v

′
v
′
),

although neither the locus of position nor its maximal val-
ues are plotted. Instead, figure 2 is presented, where the
integrated Ẽ values highlight the difference in accumula-
tion of TKE along the shear layer. In all cases, the rise of Ẽ
is exponential and steep initially, swiftly covering an order
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Figure 1. Time-averaged streamlines over a 5:1 body at
Reh = 3.04×104. (a) α = 0◦, and (b) α = 5◦.

Figure 2. Integrated turbulent kinetic energy along the 5:1
body. Reh = 3.04×104.

of magnitude, followed by a subsequent reduction in slope
at approximately x∗ ≈ 0.5 for various distances among the
three cases. The initial rise in TKE is due to the amplifica-
tion of the shear layer’s Kelvin Helmholtz (KH) instability.
The slope reduction location coincides with the turbulent
transition length for these shear layers. Beyond this point,
further accumulation of TKE is due to the magnitude of the
production term in the TKE transport equation, sustained
by substantial shear near the boundary of the recirculation
region along with increasing fluctuation amplitudes. Loca-
tions of negative slope, ∂/∂x∗, match with the reattachment
locations of the mean flow as shown earlier, where the shear
layer on the pressure side of the α = 5◦ and both alongside
α = 0◦ are relevant. That the initial reduction in slope is
concurrent with the saturation of the shear layer instability,
a detail which is explored below.

In order to describe the shear layer behavior in an ef-
ficient and effective manner its position and content must
be characterised. The following transformation performed

Figure 3. Velocity vectors in the vicinity of the leading
edge, represented by (a) Cartesian coordinates, and (b) Lo-
cal coordinates. Time-averaged shear layer position is de-
scribed by the dashed line y

′
(s) = 0. Reh = 3.04×104.

in figure 3 is used as one way to simplify the number of
parameters needed to describe the shear severity within the
shear layer. Figure 3a shows the traditional vector field for
the time-averaged flow near the leading edge corner. The
degree of shear is described here with both components of
velocity, U =U(x∗,y∗), along a trajectory specified by both
x∗ and y∗. To simplify this scenario and geometrically un-
wrap the shear layer in the regions nearest the leading edge,
a local coordinate system is used (figure 3b). The shear
layer position, in both scenarios, is indicated by the dashed
line. In the Cartesian reference frame, the shear layer is
curved. A local coordinate can be specified at each stream-
wise location with a tangent vector, s∗, and a normal vec-
tor, y

′
, each at an angle with respect to the original axes.

On interpolating the original fields onto the new local axes
and rotating the velocity vectors by the corresponding an-
gles, the local coordinate system is completed and the shear
layer is represented along the line y

′
= 0. This transforma-

tion also eases the calculation of the shear layer quantities
like momentum thickness, θ∗ and velocity ratio R, by rep-
resenting shear severity with a single component of veloc-
ity, U =U(y

′
). The transformation needs only be applied in

the regions nearest the leading edge. Everywhere else, the
radius of streamline curvature exceeds 5 or even 10 body
dimensions such that a Cartesian description remains satis-
factory.

Extracting information about the growth of specific fre-
quencies in the flow, was done with a hot wire probe po-
sitioned along the shear layer trajectories, highlighted in
figure 3. For each case along these trajectories, samples
were taken such that the power spectrum could be calcu-
lated and monitored as it evolved along the local coordinate.
It is noteworthy that the resulting spatial resolution is 140
measurements per body dimension. The series of spectra
was then divided into bins of 50 Hz and averaged such that
each bin represented a frequency band whose power could
be plotted a function of distance along the shear layer. This
procedure most simply allows the spatial amplification rates
of each frequency to be easily observed, thereby identifying
themselves as unstable ones. Singularly, the frequency bin
with the steepest slope is defined by fKH .

The combination of a local transformation and result-
ing hot wire measurements allows for the direct compar-
ison of these curved shear layers with the more classical
ones, such as the planar mixing layer. In order to make
this comparison, several subordinate parameters are needed.
These parameters are plotted in figure 4. Near the lead-

3



11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11)
Southampton, UK, July 30 to August 2, 2019

Figure 4. Constants used to non-dimensionalise growth rates. (a) Power Spectra values, S∗( fKH), (b) velocity ratio, R and
average velocity Uavg, and (c) momentum thickness, θ∗.

ing edge corner, the amplification rate of the most unsta-
ble frequency may be described by an exponential curve,
synonymous with the linear growth of small disturbances.
Using a logarithmic representation along the local coordi-
nate s, figure 4a shows the growth rates of fKH for the
three shear layers analysed here. For each data set, a fit-
ting curve shows the robustness of the assumption about
linear disturbances. In general, the fit is good. Incorpo-
rating data points farther downstream results in increasing
deviations from the fit curves. Points upstream of those
plotted here are nearly constant values, resting just above
the noise floor of the hot wire measurement system. The
resulting data set that is shown here is a best estimate for
the range where the growth of this disturbance is assumed
to be a linear mechanism. Over that same range, figure 4b
shows the velocity ratio gained from the local PIV fields
defined by R = (Umax−Umin)/Uavg as well as Uavg itself,
which is defined as, Uavg = 0.5(Umax +Umin). The veloci-
ties Umax,Umin are found on the high and low speed sides of
the shear layer, respectively. Upon inspecting the velocity
ratios, it becomes immediately clear that R> 1 everywhere.
This is indicative of recirculating flow, something that pla-
nar mixing layers do not experience and therefore R never
exceeds unity in those cases. Lastly, the values of the mo-
mentum thickness are presented in figure 4c for the three
shear layers. Planar mixing layers abide by the behavior
identified in Winant & Browand (1974) where the growth
appears linear when the layer is turbulent. The data in the
current study show that all three shear layers exhibit expo-
nential growth of momentum thickness initially. In the im-
mediate regions near the leading edge as shown in figure 4c
the corresponding increase is relatively small over the first
0.15h. Beyond that point, the exponential growth acceler-
ates the size the momentum thickness significantly. This has
been seen before for the 1:1 square by Lander et al. (2018)
who explained that the growth is not only exponential in
space, but non-linearly depends on Reynolds number, a fea-
ture that is typically associated with wall-bounded flows
rather than free shear layers. In the current study, the surface
of the model, or the wall, is only a handful of momentum
thicknesses away from the place of calculation leaving the

door open for those who wish to study the nearby influence
of boundaries on nominally free shear layers.

Nevertheless, the magnitude of the momentum thick-
nesses presented reflect the importance of the small scales
at the leading edge, namely those less than 1 percent of the
body dimension. None of the data in figure 4 begin exactly
at the origin as the linear fitting procedure only fits well
beyond s∗ > 0.05, suggesting either that there is a critical
distance to transition, or the levels of fluctuations are be-
neath the resolution of the anemometer. However, they do
show that each shear layer scenario contains values that are
nearly constant or weakly increasing over the first 15% of
the body height. The amplification rate in this domain, ve-
locity ratios and corresponding momentum thicknesses are
well represented by average values. As such, average values
of each of these curves are extracted to non-dimensionalise
the growth rates over the same physical domain.

The resulting distribution of all spatial growth rates are
plotted in figure 5 for the shear layers on a 5:1 body, for
α = 0◦ and 5◦. In addition to the experimental data for these
bluff body shear layers, the solution to the hydrodynamic
instability of the hyperbolic tangent profile is included from
the spatial analysis in Michalke (1965). The hyperbolic tan-
gent velocity profile is widely accepted as one continuous
form of the self-similar velocity profiles for planar mixing
layers, and can be used in solving the Rayleigh equation for
small disturbances. With that in mind, it is employed here as
an analytical solution to a flow that is well predicted by lin-
ear theory. For the experimental data, the fitting curves pre-
viously discussed are used to generate the data points in fig-
ure 5. Recognizing that instability waves may be described
in a spatial sense using normal modes, φ ∝ ei(kx−ωt) where
k is a complex wave number and ω is a real frequency, the
increasing slopes in figure 4a may be used as an analog for
the imaginary component, −ki. Slopes are rendered dimen-
sionless by the initial values of the momentum thickness
and velocity ratio. Frequencies have a similar dimensional
reduction, using the the average velocity. As stated, the ve-
locity ratio is more than one in all shear layers tested here,
in effect attenuating these curve amplitudes. On the other
hand, the velocity ratio for Michalke’s solution is exactly 1.

4



11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11)
Southampton, UK, July 30 to August 2, 2019

In general, the curves show familiar distribution pat-
terns where the band of frequencies that appear to grow un-
stably support a global maximum, which was identified ear-
lier by fKH . Specifically, the baseline case of α = 0◦ shares
a similar frequency band with the planar mixing layer (e.g.
frequencies beyond f θ/Uavg > 0.1 do not appear to grow).
However, on inspecting the amplitudes, the bluff body shear
layer shows more aggressive growth than the mixing layer.
Without the reduction by R the difference in amplitudes
would further increase by more than 10%. It was reminded
in Monkewitz & Nguyen (1987) that curvature in bluff body
shear layers, where the high speed side is on the outside of
the curve, ought to have a suppressing effect, reducing the
growth of the instability. This is in contrast to flows where
the high speed side may reside on the inside of the curve in
which case the growth rates are elevated. Here, it appears
that if the curvature of the bluff body shear layer is reducing
growth rates, there must be another mechanism opposing
this reduction even more so.

This suspicion is reinforced by comparing the baseline,
α = 0◦, case to the case of α = 5◦. Streamlines initially
shown in figure 1b demonstrate that the curvature of stream-
lines on the pressure side of the body are more severe than
those on the suction side. However, the growth rates indi-
cate that the pressure side boasts the highest growth rates,
nearly three times more than the planar mixing layer solu-
tion. So too is the frequency range extended compared to
the planar mixing layer, with higher frequencies becoming
more competitive by exhibiting elevated amplification rates
in the cases of the non-zero angle of attack. It is interest-
ing to see that the value extracted as fKH on the suction
is twice that of the pressure side at f θ/Uavg = 0.026, and
0.049, respectively. The appearance of two local maxima
for the pressure side distribution is a detail that was initially
unexpected. Additionally, the peaks are curiously close to
multiples of one another at 0.026 and 0.078. Arrows in
the figure indicate integer multiples of the peak frequency
on the pressure side distribution. Appealing to the litera-
ture, Lyn & Rodi (1994) have considered the validity of the
sub-harmonic growth model via collective interaction in the
presence of wake shedding behind a square prism. Their
analysis found the wake shedding to be an unlikely candi-
date for the excitation of sub-harmonics within the shear
layer, a result that is considered relevant to the current sce-
nario. Moreover, the current set of results is reserved for the
physical space upstream of the first observed vortex through
instantaneous PIV images (not shown). As such, the exis-
tence of these multiple concentrated bands of spatial ampli-
fication remain an open area of interest to the authors. From
a phenomenological perspective, the higher frequency con-
tent may be partially explained by the thinner momentum
thickness near the leading edge, a parameter that appears to
be integral to the flow both at large and small scales.

Earlier figures have indicated that the length scale rel-
evant to transition is that of the momentum thickness of the
shear layer. This is well below the length scale needed to
describe the wake, typically the body dimension via a wake
Strouhal number. Thus, there exists a magnitude gap of
nearly three orders between the dominant length scale at
the leading and trailing edges. Furthermore, it is logical to
expect that the angle of attack exerts considerable influence
on the development of the shear layer in the space between
these two areas, similar to the TKE. Figure 6 attempts to an-
swer this by comparing momentum thickness over the en-
tire side length of the 5:1 body. Proper depiction of the true

Figure 5. Growth rates of the shear layer instability for the
5:1 body. Solid line is the theoretical solution to the hyper-
bolic tangent velocity profile. Every other point is plotted.

gradients across the shear layer requires a piece-wise effort.
Close to the leading edge, x∗< 0.4, the local coordinate sys-
tem is used to calculate values of θ∗ and then projected back
onto a Cartesian x∗ axis for comparison. Beyond x∗ ≥ 0.4
the calculation is performed in the Cartesian frame. Had
the latter method been applied universally, values near the
leading edge would appear artificially inflated. In general,
the agreement and limited overlap of these two data sets is
approximately within 2% of the largest values. This is veri-
fied using the zoomed-in inset within the figure showing the
boundary between local and Cartesian calculations.

The combined effect in figure 6 resembles similar over-
all trends of the TKE presented in figure 2 where the body at
an angle of attack of 5◦ has significantly faster or slower de-
velopment rates for the suction or pressure side of the body,
respectively. The suction side, which is the only shear layer
among the three analysed to remain completely separated
along its entire length, shows growth of momentum thick-
ness that could be reasonably approximated by a linear fit-
ting procedure. The other two, having increasing streamline
curvature for the baseline case and the pressure side, show
diminishing increases. These global behavior are contrary
to what was found in the region close to the leading edge
where the slopes of these curves fit a power law with expo-
nents higher than 1. It follows that there must be an acute
reduction in slope between these two growths. However, the
associated physics behind that location are not dwelt upon
here. Instead, focus is given to the connection made be-
tween leading edge and wake region. From figure 6 it be-
gins to become clear that the shear layer transition process
takes place at scales less than 1 percent of the body dimen-
sion, a process that eventually takes on a pivotal role in the
global development of the shear layer as it matures to sizes
similar to those of the body.

DISCUSSION
Simultaneously studying the global behavior of the

shear layer as well as the small regions immediately adja-
cent to the leading edge corner allows for the tracking of
length scale migrations, which so far have largely eluded
bluff body descriptions. Crucial to these flows, and to the
descriptions they share, is the behavior of the shear layer.
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Figure 6. Downstream evolution of the momentum thick-
ness of the shear layer on a 5:1 body. The vertical dashed
line indicates the boundary for where Cartesian and Local
coordinate systems meet.

In support of this narrative, this paper submits the following
findings and conclusions. The shear layer, under low turbu-
lence free stream conditions at a constant Reynolds number,
exhibits unique behavior that prevents it from being fully
represented by planar mixing layer knowledge. Specific to
the bluff body shear layer is a steep pressure gradient at sep-
aration, a continuously changing amount of flow curvature,
recirculation on the low speed side, and potential for cou-
pling with downstream global instabilities. To account for
these effects, corrections are implemented with limited suc-
cess at matching experiments with the analytical solution.
Local coordinates geometrically unwrap the shear layer to
account for curvature. Normalizing growth rates by R cor-
rect for the effects of recirculation. And the possibility of a
coupled disturbance is reduced by testing an extended body,
(L/h = 5 as opposed to a bluffer body L/H ≈ 1) in an at-
tempt to isolate the shear layer from the wake. Admittedly,
the pressure gradient and associated vorticity flux remain
unaccounted for at this point. This series of corrections,
fails to collapse the data, suggesting that the shear layer is
in need of a revised phenomenological description.

Recent studies by this same group have published on
the scaling of the transitioning shear layer over a 2D square
prism (L/h = 1) and further pointed out that in the regions
near the leading edge corner, the shear layer and the front
face boundary layer exhibit similar behavior under a chang-
ing Reynolds number suggesting a level of communication
between the two, (Lander et al., 2018). This is in an impor-
tant finding because it points towards the continuous nature
of the flow field, even over a discontinuous edge. If the bluff
body shear layer cannot be explained using a planar mixing
layer analysis alone, perhaps further knowledge of the front
face boundary layer will shed new light on the true nature of
the flow. Specifically, the vorticity dynamics around corner
are of great interest.

At present, the manifestation of vorticity is seen by
changing the angle of attack of the body. Changing the
angle of attack has two primary effects on the shear layer.
First, the wake vortices are skewed in their position and
strength due to a difference in shear layer development. On

the suction side, the flow is completely separated beginning
at the leading edge. The shear layer freely expands and dif-
fuses vorticity before entering the wake. On the pressure
side, the flow reattaches to the lateral face, altering the vor-
ticity budget before re-separating at the trailing edge. Sec-
ond, the front face boundary layers must also react to this
change in angle. Pressure gradients at separation are re-
duced at the corner of the suction side and increased at the
pressure side. This happens at the same time that the stag-
nation point shifts to compensate for the angle of attack.
These two effects combine to generate different amounts
of vorticity, perhaps driving the difference in growth rates
explored earlier. This complicated flowfield quickly forms
a positive feedback loop. Changes in each shear layer’s
transition modulate the width of the layer by the time it
passes the trailing edge, supporting an asymmetric wake.
That asymmetry is communicated to the front face, which
further changes the vorticity concentration in the separated
shear layer, facilitating different growth rates on the pres-
sure/suction sides. This continuous pattern also links small
scales (high frequencies) at the leading edge with the larger
ones in the wake, underscoring a shear layer instability that
is inherently coupled by some finite amount to other insta-
bilities in the flowfield.
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