
11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11)
Southampton, UK, July 30 to August 2, 2019

ON THE ONSET OF TRANSITION IN 90◦-BEND PIPE FLOW

Valerio Lupi
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ABSTRACT
The present work deals with the global stability anal-

ysis of the flow in a 90◦-bend pipe with curvature δ =
R/Rc = 0.3, being R the radius of the cross-section of
the pipe and Rc the radius of curvature at the pipe cen-
treline. Direct numerical simulations (DNS) for values of
the bulk Reynolds number Reb = UbD

ν
between 2000 and

3000 are performed. The bulk Reynolds number is based
on the bulk velocity Ub, the pipe diameter D, and the kine-
matic viscosity ν . It is found that the flow is steady for
Reb ≤ 2500, and two pairs of symmetric, counter-rotating
vortices are observed in the section of the pipe downstream
of the bend. Moreover, two recirculation regions are present
inside the bend, one on the outer wall and the other on
the inner one. For Reb ≥ 2550, the flow becomes periodic,
oscillating with a fundamental non-dimensional frequency
St = f D/Ub = 0.23. A global stability analysis reveals a
pair of complex conjugate eigenvalues with positive real
part. The velocity components of the unstable direct and ad-
joint eigenmodes are investigated, and it is observed that a
large spatial separation occurs because of the non-normality
of the linearised Navier–Stokes operator. Thus, an analy-
sis of the structural sensitivity of the unstable eigenmode to
spatially localised feedbacks is performed, in order to iden-
tify the core of the instability, the so-called wavemaker. It
is found that the region located 15◦ downstream of the bend
inlet, on the outer wall, is where the instability originates.
Since flow separation is observed in this region, it is con-
cluded that the instability is linked with the strong shear by
the backflow phenomena.

INTRODUCTION
In previous works on bent pipes, a secondary motion

in the form of two symmetric, counter-rotating vortices,
known as Dean vortices, was observed. Indeed, as shown by
Dean (1927) in the limit of small curvatures, the secondary
motion is established in order to balance the centrifugal
force, since the cross-stream pressure gradient alone can-
not counteract it. This secondary flow enhances, e.g., heat
transfer and mixing. Moreover, due to the Dean vortices,

the pressure drop has a lower magnitude near the outer side
of the bend compared to the inner side, differently from the
straight pipe case, as outlined in Berger et al. (1983).
The understanding of the flow in bent pipes is crucial since
they are used in several industrial applications, e.g. to trans-
port gases and fluids, in the exhaust system of internal com-
bustion engines, and in cooling systems of nuclear reactors.
Indeed, in the last decades, increasing attention has been
paid to the study of this kind of flow in order to improve the
design of pumping systems and heat exchangers, as well as
the accuracy of measurements on pipelines (Vashisth et al.,
2008). In addition, the secondary motion may induce vibra-
tions (Yamano et al., 2011), and the consequent mechanical
fatigue, and has a fundamental role also in the mechanism
of thermal fatigue (Tunstall et al., 2016). The understand-
ing of this flow is important also from a biological point
of view. Indeed, the investigation of the maxima and min-
ima of the wall shear stress in blood vessels provides infor-
mation on the formation of atheromatous plaques (Berger
et al., 1983).
Recently, Kühnen et al. (2014, 2015), by means of exper-
imental investigations, provided a detailed overview of the
sequence of bifurcations that lead to transition to turbulence
in toroidal pipe flows and observed that subcritical transi-
tion occurs for values of the curvature δ ≤ 0.028. In a nu-
merical work by Canton et al. (2016), it was found that the
flow in a torus is linearly unstable for all the values of the
curvature greater than 2 ·10−3, and it was observed that the
instability occurs as a Hopf bifurcation leading to a periodic
regime. Numerical simulations also showed the presence of
two symmetric, counter-rotating vortices for any Reynolds
number and any non-zero curvature, a result proven an-
alytically in a later work (Canton et al., 2017). Further-
more, it was pointed out that the Dean number alone cannot
fully characterise the flow behaviour. Indeed, Canton et al.
(2017) showed that the flow in curved pipes depends sep-
arately on the Reynolds number and on the curvature. Ri-
naldi et al. (2019) observed subcritical transition in curved
pipes with δ = 0.01 for 2950 / Reb / 3100. It occurs as
the intermittent coexistence of laminar and turbulent flow.
However, the front dividing the two was found to be not as
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Figure 1: Reference system used in the current work,
together with the Cartesian coordinates. R is the ra-
dius of the pipe, Rc the radius of curvature, θ is the
angular distance from the bend inlet.

strong as in the straight pipe case. Furthermore, in a recent
work by Canton et al. (2019), it was found that, in a narrow
region of the parameter space (δ ,Reb), two different transi-
tion scenarios are possible at the same time, depending on
the initial condition.
The aforementioned works studied the stability of the flow
in toroidal pipes; however, to the best of the authors’ knowl-
edge, in the literature, there are no studies on the stability
properties of the flow in a 90◦-bend.

COMPUTATIONAL SETUP
The computational domain consists of two straight sec-

tions, located up and downstream of the bend and 10D long
each, and a 90◦-bend, with radius of curvature equal to three
times the radius of the pipe. The domain is discretised with
hexahedral spectral elements where Lagrangian bases with
polynomial order N = 7, built on tensor-product Gauss–
Lobatto–Legendre (GLL) nodes, are used. The Navier–
Stokes equations are expressed in Cartesian coordinates and
direct numerical simulations (DNS) are performed using the
spectral-element code nek5000 (Fischer et al., 2008). In
the post-processing phase, a local reference system {p,y,s}
is introduced, as shown in Figure 1. The coordinate y is the
same of the Cartesian coordinate system, s is the stream-
wise coordinate along the pipe centreline with origin at the
bend exit, and p, referred to as spanwise coordinate, forms
a right-turning triad with y and s.

INSTANTANEOUS FLOW FIELDS
The flow is found to be steady for Reb ≤ 2500, with

fairly complex flow structures, as shown in Figure 2. For
this flow case, a parabolic profile is specified at the inflow
at a distance upstream of the bend. Then, two pairs of sym-
metric, counter-rotating vortices are observed downstream
of the bend: two larger vortices, identified with the Dean
vortices, are located at the centre of the pipe cross-section,
whereas two smaller ones are close to the inner wall. As
the distance downstream of the bend increases, the latter
pair moves towards the centre of the pipe, at expenses of
the Dean vortices. Thus, a so-called four vortex state can be

seen in this spatially-developing configuration (Nandaku-
mar & Masliyah, 1982); the fully developed flow in a torus,
on the other hand, only features one pair of Dean vortices.
Figure 3 shows two backflow regions inside the bend, one
placed at the outer wall of the pipe, between θ = 0◦ and
θ = 30◦, and a second one located on the inner bend, ap-
proximately 67.5◦ downstream of the bend inlet.
The lowest Reynolds number, among the investigated ones,
for which the flow is found to be unsteady is equal to 2550.
For this value of Reb, a periodic regime is established. In
particular, it is observed that the backflow regions exhibit
an oscillatory behaviour, with a fundamental frequency
corresponding to a Strouhal number St = f D/Ub = 0.23.
The same frequency is measured in the oscillations of the
streamwise velocity component, as shown in Figure 4. Note
that the streamwise direction is always defined in the direc-
tion of the main flow, i.e. following the bend. It can be noted
that the frequency content of higher harmonics increases
with the streamwise distance. This indicates that the initial
instability is likely of linear nature, and that nonlinear in-
teractions become more and more important further down-
stream. Thus, a global stability analysis is performed next
in order to investigate the origin of this periodic regime.
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Figure 2: Pseudocolours of the velocity magnitude
in the symmetry plane and on cross-sections along
the pipe at Reb = 2500. In-plane streamlines are
shown on the cross-sections as well; their location is
s/D = 0,2,4,6,8. The arrow indicates the flow direc-
tion. Only part of the inlet section is shown.

GLOBAL STABILITY ANALYSIS
The first step of the global stability analysis is to com-

pute the base flow at Reb = 2550, which is a steady equi-
librium solution of the Navier–Stokes equations. Since this
solution is unstable for the value of the Reynolds number
considered, the BoostConv algorithm, developed by Citro
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Figure 3: Pseudocolours of the streamwise velocity
component inside the bend at Reb = 2500. Green and
blue areas indicate backflow regions.

et al. (2017), is employed in order to stabilise it. The algo-
rithm is called every 50 time units of the non-linear solver,
and a Krylov subspace of size 25 is used. It is assumed that
the flow has reached the steady state when the Euclidean
norm of the difference between the velocities computed at
two consecutive iterations is less than 10−10. The result-
ing base flow presents a morphology which resembles the
steady flow at Reb = 2500. This is expected because of the
small difference in the Reynolds number.
Once the base flow is computed, the Navier–Stokes equa-
tions can be linearised around it in order to obtain the per-
turbation equations. Using the normal-mode hypothesis, the
velocity and pressure fields are then expressed as

uuu′(xxx, t) = ûuu(xxx) eλ t , λ ∈ C

p′(xxx, t) = p̂(xxx) eλ t , λ ∈ C
(1)

where λ = σ + iω , being σ the growth rate and ω the fre-
quency. In this way, the generalised eigenvalue problem can
be recast in the form

λM q̂qq = J q̂qq (2)

where q̂qq =

(
ûuu
p̂

)
. However, the explicit construction of the

matrices M and J is too demanding in terms of storage and
computational cost, and therefore a matrix-free method is
used, as described in Bagheri et al. (2009). By exploiting the
incompressibility constraint and the boundary conditions, it
is possible to write the perturbation equations as an initial
value problem (Schlatter et al., 2011), such that the solution
is

uuu(xxx, t) = eLt uuu0(xxx), (3)

where eLt is a matrix exponential. It can be proven (Bagheri
et al., 2009) that the eigenvalues of eLt are related to those
of L. Moreover, the explicit construction of the matrix ex-
ponential is not needed since its effect on a vector can be
computed by time-marching the Navier–Stokes equations.
Hence, using snapshots of the flow field separated by a con-
stant time interval, a Krylov subspace is built and the eigen-
values are computed by means of the implicitly restarted

Arnoldi method (IRAM) proposed by Sorensen (1992) and
implemented in the software package ARPACK (Lehoucq
et al., 1998). This method avoids the storage of a large num-
ber of eigenvectors since it combines the Arnoldi factoriza-
tion with the implicitly shifted QR scheme.
In the present work, we use the implementation of the
Arnoldi algorithm in Nek5000 described by Peplinski et al.
(2015). 20 eigenpairs are computed both for the direct and
the adjoint problem, and the resulting spectra are shown in
Figure 5. The spectrum of the adjoint problem is well in
agreement with that of the direct one, apart from two stable
eigenvalues that exhibit a relevant deviation. However, since
the current analysis focuses mainly on the unstable part of
the spectrum, the eigenvalues are well approximated for the
purpose of this work. A pair of unstable complex conju-
gate eigenvalues is found, with a frequency ω = 1.4402
corresponding to St = 0.229, which is in good agreement
with the value St = 0.23 observed in DNS, being their rela-
tive difference lower than 1%. This result confirms that the
flow undergoes a Hopf bifurcation between Reb = 2500 and
Reb = 2550. A better estimate of the critical Reynolds num-
ber is provided by computing the eigenvalues at Reb = 2500
and performing a linear interpolation between the values
of the growth rate of the least stable mode in both the sta-
ble and unstable case. It is found that the critical Reynolds
number is approximately 2529, hence much lower than the
value Reb,cr ≈ 3379 computed by Canton et al. (2016) in
the case of a toroidal pipe with the same curvature δ = 0.3.
This means that, albeit undergoing the same kind of bifurca-
tion, bent pipes preceded and followed by straight sections
exhibit different stability properties with respect to curved
pipes, and therefore have to be studied separately. This re-
sult is perhaps not surprising given the complex spatially
developing base flow, as shown in e.g. Figure 2.

The spatial structure of the unstable direct eigenmode is
analysed: the mode is symmetric with respect to the span-
wise direction, and the spanwise velocity component ex-
hibits relevant amplitudes in the section downstream of the
bend exit, as shown in Figure 6. A spatially localised struc-
ture is present inside the bend, on the outer wall, in the same
region where backflow occurs. Looking at the isosurfaces
of the spanwise velocity component in Figure 7, it can be
noted that this structure is generated at the outer wall of
the bend, it moves towards the inner wall as the angular
distance inside the bend increases, and then develops in a
larger structure downstream of the bend.

The structure of the unstable adjoint eigenmode is also
analysed and the pseudocolours of its spanwise velocity
component are shown in Figure 8. Significant values are
attained in the section upstream of the bend and in that
immediately downstream of the bend inlet. These regions
are therefore identified with the most receptive to momen-
tum forcing and initial conditions (Giannetti & Luchini,
2007). The large spatial separation between the direct and
adjoint eigenmode is an indicator of the non-normality of
the linearised Navier–Stokes operator (Chomaz, 2005).

STRUCTURAL SENSITIVITY ANALYSIS
Because of this large spatial separation between the di-

rect and adjoint eigenmode, it is not possible to draw any
conclusion about the location of the core of the instability
by studying the two modes separately. Therefore, an analy-
sis of the structural sensitivity of the unstable eigenmode to
spatially localised velocity feedbacks is performed in order

3



11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11)
Southampton, UK, July 30 to August 2, 2019

(a) (b)

(c) (d)

(e) (f)

Figure 4: Time signal of the streamwise velocity component for Reb = 2550 and related power spectral density,
measured at (a)–(b) θ = 30◦, (c)–(d) s/D = 0, (e)–(f) s/D = 4. The velocity probe is located at (p,y) = (1.2,−0.3)
in the cross-section. The Strouhal number is defined as St = f D/Ub.

Figure 5: Spectrum for the direct (∗) and adjoint (◦)
problem for Reb = 2550. A pair of unstable complex
conjugate eigenvalues λ = 0.0316± i1.4402 is found.

to locate the wavemaker (Giannetti & Luchini, 2007). The
spatial distribution of the structural sensitivity function η ,
defined as

η(xxx) =
||ûuu†(xxx)|| ||ûuu(xxx)||∫
Ω

ûuu†(xxx) ··· ûuu(xxx) dΩ
, (4)

where ûuu(xxx) and ûuu†(xxx) are the direct and adjoint velocity
fields, respectively, is analysed. Significant values are found
only in the region inside the bend, on the outer wall, at an
angular distance of approximately 15◦ from the bend inlet,
as can be observed in Figure 9. Since this is a region of
backflow, it is concluded that a shear layer instability oc-
curs, with a feedback mechanism generated by the recircu-
lation.

CONCLUSIONS
The laminar and transitional flow in a 90◦-bend pipe

is investigated by means of direct numerical simulations. It
is found that the flow is steady for Reb ≤ 2500 and it turns
unsteady when the Reynolds number is increased. It is ob-
served that a purely periodic regime is well established at
Reb = 2550. A global stability analysis is performed in or-
der to study the origin of the transition from the steady to
the periodic regime. A pair of unstable complex conjugate
eigenvalues, with a frequency very close to that measured
in DNS, is found. It is then concluded that the flow is glob-
ally unstable for Reb ' 2529 due to a Hopf bifurcation. This
value is significantly lower than for the corresponding flow
in a torus.
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Figure 6: Real part of the unstable eigenmode for
Reb = 2550. In the symmetry plane pseudocolours
of the spanwise velocity component up are shown,
whereas the cross-sections show in-plane streamlines
and pseudocolours of the streamwise velocity com-
ponent us. Arbitrary units. The arrow indicates the
flow direction. Inset: magnified view of the structure
present inside the bend.

Figure 7: Isosurfaces of the spanwise velocity compo-
nent up of the real part of the unstable eigenmode in
the bend region for Reb = 2550. Values in the range
[−0.25,0.25] are shown. Red surfaces indicate posi-
tive values, whereas blue surfaces represent negative
ones. Arbitrary units. The arrow indicates the flow di-
rection. Alternation of positive and negative values is
observed at the outer wall of the bend.

The investigation of the spatial structure of both the direct
and adjoint unstable eigenmodes shows a large spatial sep-
aration between the two, making it impossible to draw con-
clusions about the origin of the instability by analysing the
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Figure 8: Real part of the unstable adjoint mode
for Reb = 2550. The pseudocolours of the spanwise
velocity component up in the symmetry plane are
shown. Arbitrary units. The arrow indicates the flow
direction. Inset: magnified view of the bend region. A
large receptivity to momentum forcing and initial
conditions is observed in the inlet section and in the
region just after the bend inlet, on the outer wall.

two modes separately. To this end, an analysis of the struc-
tural sensitivity of the unstable eigenmode to spatially lo-
calised feedbacks is performed. It is found that the structural
sensitivity function η exhibits significant values inside the
bend, on the outer wall, approximately 15◦ downstream of
the bend inlet. Since in this region backflow occurs, the in-
stability is a shear layer one. The influence of the curvature
ratio on the stability properties of the flow has to be further
understood, for the purpose of tracing a complete bifurca-
tion diagram.
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Bagheri, S., Åkervik, E., Brandt, L. & Henningson, D. S.

2009 Matrix-free methods for the stability and control of
boundary layers. AIAA Journal 47 (5), 1057–1068.

Berger, S. A., Talbot, L. & Yao, L. S. 1983 Flow in curved
pipes. Annual Review of Fluid Mechanics 15 (1), 461–
512.
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