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ABSTRACT
We characterize the complex nonlinear vortical inter-

actions in two- and three-dimensional decaying isotropic
turbulence through network-theoretic formulations and use
network-based measures to identify and quantify the ef-
fects of influential structures on mixing enhancement. The
web of interactions among vortical elements can be repre-
sented in a network-based framework where the vortical el-
ements are the nodes and the vortical interactions are edges
quantified by induced velocity following the Biot-Savart
law. We find relationship between enstrophy and interac-
tion strength, distribution of which gives an overall interac-
tion behavior of the flow. Identification of vortical commu-
nities, groups of closely interacting nodes, enables the clas-
sification of shear layers and vortex core dominated struc-
tures as network connector and peripheral structures respec-
tively. These respective elements exhibit inter-community
and intra-community interactions. Furthermore, we find
that perturbing the connectors and peripherals by adding
and removing energy respectively can enhance mixing in
both 2D and 3D decaying isotropic turbulence.

INTRODUCTION
Modifying the characteristics of turbulence is one of

the most challenging problems in science due to its nonlin-
ear and multiscale dynamics. Characterizing the behavior
of turbulent flows is pertinent to modeling and controlling
them, essential to various applications in modern science
and technology (Brunton & Noack, 2015). The field of
network science quantifies and reveals crucial interaction-
based phenomena in a wide range of physical systems rang-
ing from internet to neurons in brain (Newman, 2010). In
this work, we use network-theoretic formulations to charac-
terize vortical interactions in 2D and 3D decaying isotropic
turbulence. We find a relationship between node interaction
strength and enstrophy. Furthermore, network-based com-
munity detection tools are used to identify groups of closely
connected vortical elements and classify them as connectors
and peripherals based on how they interact with the overall
flow field. This information is used to assess the influence
of such structures towards enhancing turbulent mixing.

VORTEX INTERACTION NETWORK
A network or graph G consists of vertices or nodes

V connected by edges or links E which may be weighted
W , giving a definition G = G (V ,E ,W ) for the network
(Newman, 2010). The connectivity among the nodes can be
mathematically represented by the adjacency matrix as

Ai j = w ji, (1)

where wi j represents the weighted connection from node i
to j. If the connection from j to i is the same, then the edge
is said to be undirected, else, directed. We use this formula-
tion to express the interactions among vortical elements in
fluid flows.

We represent the vortical elements in a flow field as the
nodes and the nonlinear web of interactions among them as
the weighted edges of a network, namely the vortical inter-
action network. The influence of vortical elements on each
other imparts induced velocity on them, which is governed
by the Biot-Savart law. This makes the induced velocity an
appropriate choice to quantify the interaction among vorti-
cal elements (Nair & Taira, 2015). The generalized Biot-
Savart formula for an incompressible flow in n dimensions
is given by

u(r, t) =
1

2(n−1)π

∫
V

ωωω(r, t)× r
||r||n

dV. (2)

The interaction between two vortical elements i and j in two
vortical structures is depicted in Fig. 1. The magnitude of
velocity induced by element i on j can be generalized as

ui→ j =


|Γi|

2π||r j−ri|| , n = 2∥∥∥Γidli
4π

êωi ×
(r j−ri)
||r j−ri||3

∥∥∥ , n = 3
(3)

where Γ = ||ωωω(r, t)||dA and êω = ωωω(r, t)/||ωωω(r, t)|| are re-
spectively, the strength and direction of vorticity of a vortex
element of area dA and width dl at position r. The adja-
cency matrix for the vortical interaction network (Nair &
Taira, 2015; Taira et al., 2016) is defined by

w ji = ui→ j. (4)

For a flow field with n grid points, A ∈ Rn2×n2
. The above

formulation gives weighted, unsigned, directed vortical in-
teraction networks for 2D and 3D flows, applicable for both
Eulerian and Lagrangian description of flow fields. The
network-theoretic representation allows us to utilize vari-
ous network-based measures to characterize the connectiv-
ity and geometric properties of the complex nonlinear vor-
tical interactions.
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Figure 1. Interaction between two vortical elements.

Vortical interaction strength
The overall influence of a node in a network is given

by the network strength of the node (Newman, 2010). The
strength of each vortical node in a directed vortical network
quantifies its ability to be influential (out-strength) or be in-
fluenced (in-strength) with respect to all the other nodes.
The out- and in-strengths are given by

sout
i = ∑

j
Ai j and sin

i = ∑
j

A ji, (5)

respectively. The present definition of the vortical network
weight implicitly assumes the out-strength form. The prob-
ability distribution of strength p(s) gives a global picture
of the vortical network connectivity. The profile of the
distribution is used to identify the type of the network,
e.g., scale-free networks portraying a power-law distribu-
tion, p(s)∼ s−γ (Barabási, 2016).

For both 2D and 3D, the strength of an element i is

Γi = ||ωωω i||dA =
√

ΩidA, (6)

where Ωi is the enstrophy. The vortical node interaction
strength can be reduced to,

si =
Γidl

2(n−1)π
f (êωi)∑

j
g(∆rrri j) (7)

=
D

2(n−1)π

√
Ωi f (êωi)dV ∝

√
Ωi f (êωi), (8)

where the sum of distance components D is constant for
all nodes. Thus, if the enstrophy distribution of a complex
vortical flow follows a function p(Ω) = h(Ω), which is usu-
ally known or can be obtained from observations for differ-
ent fluid flow problems, then the strength distribution of the
vortical flow network will also follow the function h(s).

The above relations allows the network weight to be
non-dimensionalized based on the enstrophy of the flow

w̃i j =


wi j

A1/2Ω
1/2
tot

for 2D
wi j

V 1/3Ω
1/2
tot

for 3D,
(9)

where Ωtot is the total enstrophy of all the vortical elements
per unit area or volume. The above non-dimensionalization
allows us to analyze various types of vortical flow networks
irrespective of the number of vortical elements due to vary-
ing resolution of the flow field representations, the total en-
strophy differences based on the Re effects on different flow,
and domain size.

Isotropic turbulence network
We analyze the network structure of 2D and 3D de-

caying isotropic turbulence using the above mentioned for-
mulations and measures. A Fourier spectral (Taira et al.,
2016) and pseudo-spectral algorithm (Chumakov, 2008) is
used to solve the Navier-Stokes equations in biperiodic and
triperiodic domains for the 2D and 3D flows respectively.
The network structure of the 2D decaying isotropic turbu-
lence was analyzed by Taira et al. (2016) and have shown
that the strength distribution follows a scale-free behavior
as long as the energy spectrum follows the k−3 profile. For
each of the flow mentioned, we use snapshots of vorticity
data to construct the adjacency matrices. Regions with low
values of ‖ωωω‖ are removed. For the 2D dataset, subsam-
pled flow fields from 1024×1024 to 128×128 are used for
computing strength and other network measures discussed
later. For 3D turbulence, we also use forced isotropic tur-
bulence data from Johns Hopkins Turbulence Database Li
et al. (2008). Subdomain (1/8th) of the Reλ = 418 flow
with a resolution of 1024×1024×1024 is used for certain
initial analyses. For further in-depth analyses, full periodic
flow field of low Reynolds number cases with Reλ ∈ [30,45]
with a grid resolution of 64×64×64 is computed through
DNS.

The strength and enstrophy distributions of the vorti-
cal networks of 2D and 3D isotropic turbulence at an in-
stant in time are shown in Fig. 2. We note that the enstro-
phy relations for network strength still holds. Benzi et al.
(1987) have found power-law profile for the distribution of
enstrophy for 2D decaying isotropic turbulence. The power-
law distribution for the strength observed in Fig. 2 (top) is
in conjecture with this observation as per our claim. For
the three-dimensional turbulence, the enstrophy distribution
follows a stretched-exponential profile (Donzis et al., 2008),
given by

P(Ω) = g(Ω)∼ exp(−aΩΩ
b). (10)

The distribution of s should also follow a similar function
as Ωi ≈ s2

i . Thus, for 3D isotropic turbulence,

P(s2)≈ g(s2)∼ exp(−ass2b) (11)

P(s)∼ exp(−assb). (12)

The stretched exponential distribution form of the out-
strength with the same exponent as that of the enstrophy
distribution is shown in Fig. 2 (bottom). The low-strength
saturation from the power-law behavior of P(s2) in 2D cor-
responds to the presence of vortical elements with negligi-
ble strength. For 3D turbulence, the vorticity is spread over
a wide scale of structures due to vortex stretching and tilt-
ing, which is absent in 2D flows. This corresponds to the
absence of low-strength saturation in 3D and stretched ex-
ponential behavior of P(s2).

The node strength can be used to highlight the most in-
fluential vortical nodes in the flow field as shown in Fig. 3.
Here, the network strength is visualized along with flow
field measures of high positive Q-criterion and norm of
strain tensor. The high network strength region aligns with
both Q > 0 and ‖S‖ > 0. We ask the question of which
structures in the flow field corresponds to the highly influ-
ential vortical structures in the flow. In an attempt to answer
this question, we use community detection algorithm from
network theory to identify these influential structures.
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Figure 2. Enstrophy and network strength distributions of
2D (top) and 3D (bottom) isotropic turbulence.

Figure 3. Comparing structures with high network
strength s (blue), rotation Q (red), and strain ‖S‖ (green)
in a contour slice of a subdomain of high Reλ 3D isotropic
turbulence (top) and 2D isotropic turbulence (bottom).

VORTICAL COMMUNITIES
Identifying close connected vortical nodes is important

towards revealing key coherent structures in a vortical flow.
Such modular groups of nodes in a network with high con-
nectivity amongst each other are called communities . The
overall modular nature of the network structure is measured
by modularity Q, given by (Leicht & Newman, 2008)

Q =
1

2ne
∑
i j

[
Ai j− γQ

sin
i sout

j

2ne

]
δ (ci,c j), (13)

where ne is the total number of edges in the network, γQ
is the modularity resolution parameter to weight the pres-
ence of small or large communities in the network, δ (i, j)
is the Kronecker delta, ci ∈ Ĉl is the label of the commu-
nity to which element i is assigned and Ĉl is the set of l-
th network community. Here, l = 1,2, . . . ,m, with m be-
ing the total number of communities, unspecified and de-
termined by the network-based algorithm. Identifying the
communities involve regrouping the nodes so as to maxi-
mize modularity. Various algorithms are available to iden-
tify the communities in a network and we use the one devel-
oped by Blondel et al. (2008) to identify the communities in
the vortical interaction network as shown for a sample case
in Fig. 4 (a) (top). These communities represent vortical
structures in a flow field containing vortical elements which
interact closely and are specified as vortical communities
(Gopalakrishnan Meena et al., 2018).

The identification of vortical communities allows us to
use various community-based network measures to analyze
in-depth the connectivity within and amongst the commu-
nities, and hence, various vortical structures present in the
flow field. The normalized z-score of the nodes within a
community, called the within-module z-score (Guimera &
Amaral, 2005), measures the intra-community interaction
strength, how well a node is connected to other nodes in the
same community, given by

zouti =
κi,i−κi,i

σκi,i

(14)

where κi, j = ∑
k∈C j

Aik, κi,i is the average of κ over all the

nodes in the community ci, and σκi,i is the standard devi-
ation of κ in ci. The inter-community interaction strength,
ability of a node to interact with multiple communities mea-
sured by how well-distributed the links of a node is among
different communities, is measured by the participation co-
efficient (Guimera & Amaral, 2005)

Pouti = 1−
m

∑
k=1

(
κi,k

si

)2
. (15)

If P is close to 1 then the links of node i are uniformly dis-
tributed among all communities and if it is 0 then the node
is only connected to its own community. The P− z map of
nodes are important towards revealing key vortical elements
within and among vortical communities. The P− z map for
the sample community detection results are shown in Fig.4
(a) (bottom). The nodes on the right side of the map will
be well-connected ones, called the connectors, and the ones
to the left side would be isolated groups, called peripherals.
Also, top region with z� 0 consists of hub nodes and bot-
tom region consists of weakly connected nodes. Through
these network community-based formulations, the spatial
distribution along with the strength of vortical structures are
captured for extracting influential structures in the flow.

We do not observe a clear distinction between connec-
tors and peripherals for the results depicted in Fig. 4 (a)
(bottom). This is due to the vortical flow network being
fully connected. The nodes with high vorticity strength are
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Figure 4. (a) Sample vortical community detection and corresponding P− z map. (b) Two-step community detection and (c)
corresponding P− z maps.

highlighted as hubs. Also, the sample flow field is vortic-
ity thresholded significantly to clearly depict the identifica-
tion of coherent vortical communities. We implement the
methodology to a full flow field of relatively low Reλ as
shown in Fig. 4 (b). Here, the initial community detection
procedure coarsely identifies regions in the flow field with
no distinct coherency and the P−z map does not show clear
distinction between connectors and peripherals.

With the assumption that highly rotational vortical ele-
ments and strained elements are ought to interact distinctly,
we aid the community detection algorithm by splitting the
flow field into two, one with nodes having Q > 0 and the
other with Q < 0. We recompute the communities indepen-
dently for these two sub-networks with initial guess from
the previous step. The P− z map is recomputed by combin-
ing the community information from these for the original
full network. This two-step community detection procedure
reveals the nodes to follow broadly two forms of correla-
tions in the P− z map. One set of nodes are oriented at
a negative angle positioned on left side and the other ori-
ented vertically on right side, and we classify them as pe-
ripheral and connector nodes respectively. The first group
predominantly contains nodes with Q> 0 and the other with
Q < 0. Most shear-layers are connector communities and
vortex cores are peripheral communities. We observe sim-
ilar result for 2D isotropic turbulence and for an ensemble
of cases at various Reλ . Given the classification of vortical
structures into connectors and peripherals, let us now ana-
lyze how this network definition relates to fluid flow.

COMMUNITY-BASED PERTURBATION
The connector communities in network science are the

ones which spread information throughout the network, in-
fluencing majority of the network. In fluid flow, given an
input perturbation on connector communities in terms of en-
ergy, the perturbation should influence the flow in an inter-
community manner. If we introduce some level of vorticity
or velocity field fluctuation on such nodes, these fluctua-
tions should affect the vorticity or velocity fluctuations of
the whole flow field more compared to perturbing the pe-
ripheral communities. The later should make the perturbed
region more organized or highly disorganized based on the

direction of input (can be visualized as adding a perturba-
tion to the core of a vortex in the or opposite direction of
its rotation). Since the vortical network formulation is kine-
matic, we should expect this phenomena at least in a short
time interval. We will explore how these affects would af-
fect the flow field asymptotically also. Fluctuations as such
should enhance turbulent mixing.

We perform analyses by perturbing individual commu-
nities obtaining a localized perturbation. We choose com-
munities which are clearly distinct in their classification as
a connector or peripheral and neglect those communities in
the middle region of the P− z map where their classifica-
tion is ambiguous. Several ensemble of cases with varying
initial condition and Reλ are considered for both 2D as well
as 3D isotropic turbulence. The identified connector and
peripheral communities are perturbed so that the perturbed
velocity (or vorticity) field at initial condition is given by,

ũuu(xxx, t0) = uuu(xxx, t0)+Af̃ff (xxx) (16)

where

fff (xxx) =
êeeu√
2πσ2

np

∑
i=1

exp

(
−‖xxx−xxx∗i ‖2

2σ2

)
, (17)

where σ is area or volume of the vortical element (grid
size), êeeu is the unit vector in the direction of uuu, xxx∗ ∈{

xxx : c(xxx) ∈ Ĉl
}

are the locations of the perturbed nodes,
c(xxx) is the community index of the node at xxx, l is the index of
the perturbed community, and np is the number of elements
in Ĉl . fff (xxx) is normalized such that

∫
V ‖ f̃ff (xxx)‖2dV = 1, so

that amplitude A is computed for a given energy input ratio
C as

C =

∫
V
‖ũuu(xxx, t0)−uuu(xxx, t0)‖2dV∫

V
‖uuu(xxx, t0)‖2dV

. (18)

The flow is simulated from this initial condition to assess
the influence of the perturbation.
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To quantify the fluctuation of velocity or vorticity
fields, we analyze different measures, namely the Taylor
microscale λ , variance of magnitude of vorticity σ2

|ω|, and
variance of concentration of a passive scalar φ in the flow
field σ2

|φ |. We keep the µφ same as that of the fluid flow. The
decrease in the variance measures, suggesting homogene-
ity of the measure throughout the flow field, is also used
as a measure to quantify the mixing enhancement achieved
through the fluctuations in the flow field properties. The en-
semble results for the perturbations on 2D and 3D isotropic
turbulence are shown in Figs. 5 and 6 respectively.

For the 2D results, we input a C = ±0.05 for all the
initial conditions. At short time interval, λ compared to
baseline shows much larger decrease using connector-based
perturbations, signifying the increase in small scale fluctu-
ations in the flow field as expected. Peripheral-based per-
turbations with negative energy input also decreases λ for
higher Reλ cases as adding velocity or vorticity in the op-
posite direction of a vortex core would lead to vortex break-
down and hence decreasing the small scale lengths. The
changes in σ2

|φ | with respect to baseline case is insignificant
over short time horizon as the mixing phenomena takes at
least 1-2 eddy turnover time to prevail. The fluctuations
in the vorticity magnitude measured by σ2

|ω| are consistent
with the changes in λ .

At longer time horizon, where mixing prevails, σ2
|ω|

decreases more for connector-based perturbations with C =
0.05 and vice versa for C =−0.05. This suggests enhanced
vorticity distribution can be achieved through connector-
based (shear layers) and peripheral-based (vortex cores)
perturbations by adding and removing energy respectively.
Although, the values of σ2

|φ | are lower for peripheral-based
perturbation for C = ±0.05 suggesting enhanced mixing.
We will analyze the flow fields to better understand these
variation between results of σ2

|ω| and σ2
|φ |. Changes in the

results of low Re cases are not significant to distinguish be-
tween connector and peripheral based perturbations.

For the 3D results, we only analyze the effects on λ

and σ2
|ω|. We use an input of C = ±0.1 and yet there is

no distinguishable trend in the results for connector and
peripheral-based perturbations. We compare the qualitative
results of 2D and 3D. The short time horizon results of 3D
(at Reλ ∈ [30,45]) is similar to the low Re cases of 2D. Also,
in long time horizon, the changes in λ are qualitatively sim-
ilar to that observed in 2D. The results of σ2

|ω| follow the
same trend as in 2D. These suggests that we need to im-
plement the perturbations for 3D in much higher Re cases.
Implementing the passive scalar transport for the 3D cases
would also help understand the phenomena better. These
are part of the active ongoing work.

Using the inferences from the scalar measurements, we
analyze the flow field evolution of a sample case in 2D with
C = 0.05, portrayed in Fig. 7. The initial two snapshots
at t/τe0 = t1 and t2, where τe0 is the initial eddy turnover
time of the baseline, shows the effect of the perturbations
at short time horizon. The connector perturbations, ap-
plied on the shearlayer region, accelerates the shearlayer
and rolls-up into smaller vortices (shortly after t1 and is vis-
ible at t2). These interact with nearby large vortices and
modifies the flow, increasing the fluctuations of vorticity.
The peripheral-based perturbation, applied on a vortex, in-
creases the strength of the vortex and nearby region (t1)
and makes the structures more organized (t2). These time
horizons correspond to where decrease in λ are achieved

more by connector-based perturbation. At long time hori-
zon (t3), the flow fields are significantly modified, as ex-
pected, with connector-based perturbation resulting in more
smaller scale vortices and decreasing σ2

|ω|. Although, the

values of σ2
|φ | are comparatively larger for connector-based

perturbation. The passive scalar concentration at this time
instant t3 is shown in Fig. 8. The results show that φ is
larger at the region of smaller vortices and lower where
strong vortices are located, maybe resulting from the choice
of µφ . This decreases σ2

|φ | when the flow field comprises of
larger vortices as observed for peripheral-based perturba-
tion. These observations from the flow field visualization
further signifies the conclusion that shear layers and vor-
tex cores can be used to enhance mixing in 2D decaying
isotropic turbulence by adding and removing energy from
them respectively.

CONCLUDING REMARKS
We use network-theoretic formulations to represent

and quantify the vortical interactions in 2D and 3D decay-
ing isotropic turbulence as a vortical network. We derive
that network-based measure of node interaction strength is
related to enstrophy. Furthermore, influential networked
structures in the vortical network are extracted by identify-
ing communities, groups of closely interacting elements in a
network, and classifying them as connectors and peripherals
using community-based measures of within-module z-score
and participation coefficient. Connector nodes are those
which interact with most communities and peripherals, ones
which interact closely within their community. The spatial
distribution along with the strength of vortical structures
are incorporated through these network community-based
formulations while identifying influential structures. Our
results suggest that in isotropic turbulence, predominantly
shear layers are the connectors whereas vortex cores are
peripherals. Using this classification of vortical structures
in the flow field, we perform community-based perturba-
tion of connectors and peripherals and analyze the effect of
such structures on the flow field. We find that shear layers
and vortex cores can be used to enhance mixing in decay-
ing isotropic turbulence by adding or removing energy from
them respectively. For 3D results, there are ongoing efforts
to examine such forms of perturbations at higher Reynolds
numbers.
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