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ABSTRACT
In this paper, the pressure field is decomposed in-

to rotation-induced and convection-induced components
to analyze the effects of streamwise system rotation on
the pressure fluctuations and the transport of Reynold-
s stresses. We show analytically that the system rota-
tion acts as a “linear amplifier”, which converts high-
wavenumber low-amplitude streamwise vorticity fluctua-
tions into low-wavenumber high-amplitude pressure fluctu-
ations, and facilitates the growth of streamwise-elongated
Taylor–Görtler-like (TGL) vortices. A new set of transport
equations in the spectral space is derived to study the bud-
get balance of velocity-spectrum tensor at different wave-
lengths. The mechanisms underlying the generation of TGL
vortices are explained through the analyses of the budget
balance of Reynolds stresses and energy spectra.

Introduction
Turbulent flow in a channel rotating in the stream-

wise direction is physically complex due to the coexistence
of a double S-shaped triple-zero-crossing mean spanwise
velocity field (Weller & Oberlack, 2006; Oberlack et al.,
2006; Wu & Kasagi, 2004) and two-layers of streamwise-
elongated counter-rotating TGL vortices (Yang & Wang,
2018). In their direct numerical simulation (DNS) study
of streamwise-rotating channel flow at a very high rotation
number (up to Roτ = 2Ωh/uτ = 150, where Ω, h, and uτ
represent the angular speed of the system rotation, one-half
the channel height, and the mean friction velocity, repsec-
tively), Yang & Wang (2018) reported that the TGL vor-
tices play an important role in momentum transfer and in-
fluence significantly the flow statistics. They also studied
the transport equations of Reynolds stresses, and observed
that the pressure term increases rapidly in magnitude with
an increasing rotation number and plays an important role in
the budget balance of Reynolds stresses at a very high rota-
tion number. However, it is not clear why the pressure term
is sensitive to the system rotation, and how the system ro-
tation transfers turbulence kinetic energy between different
Reynolds stress components to sustain the TGL vortices.

In this research, we aim at finding answers to the above
important questions. Through an analysis of the transport e-
quations of Reynolds stresses in both physical and spectral
spaces, we demonstrate the modulating effects of system
rotation on pressure fluctuations, which significantly influ-
ences the size, strength and characteristic wavelength of T-
GL vortices in a fast streamwise-rotating flow.

Figure 1. TGL vortices visualized using the contours of
pressure fluctuation p′ at Roτ = 150 in (a) x2–x3 plane at
x1 = 0 and (b) x1–x3 plane at x2/h =−0.5. Vectors consist-
ing of u′2 and u′3 are superimposed in panel (a) to show the
rotating direction of the vortices.

Numerical Method and Test Cases
The DNS was conducted using an in-house pseudo-

spectral method code (Yang & Wang, 2018). The new find-
ings are obtained by analyzing the DNS database with the
rotation number varying from 0 to 150. The highest rota-
tion number (Roτ = 150) analyzed here is the highest for
streamwise-rotating flows in the literature. A very long
computational domain of L1×L2×L3 = 512πh×2h×8πh
(with 16384 × 128 × 256 grid points) has been used to
perform DNS at Roτ = 150 to capture the streamwise-
elongated vortex structures. In order to focus our study
on the effect of rotation number on the TGL vortices, the
Reynolds number is fixed to Reτ = uτ h/ν = 180 in all cas-
es, where ν is the kinematic viscosity of the fluid. In p-
resenting the results, we use a pair of angular brackets ⟨·⟩
to denote temporal- and plane-averaging, and subsequent-
ly, the fluctuating component of an arbitrary variable ϕ is
determined as ϕ ′ = ϕ −⟨ϕ⟩.

Decomposition of Pressure Fluctuations
Figure 1 shows typical vortex structures at Roτ = 150

in both cross-stream (x2–x3) and horizontal (x1–x3) planes.
From Fig. 1(a), it is observed that positive and negative
pressure fluctuations p′ collocate with the large-scale vor-
tices rotating in the counter-clockwise and clockwise direc-
tions, respectively. Figure 1(b) shows that the TGL vortices
visualized using the contours of instantaneous pressure fluc-
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Figure 2. Profiles of pr,rms and pc,rms at Roτ = 150.

tuations p′ are elongated in the streamwise direction.
To further study the effect of system rotation on the

pressure field, we take the divergence of momentum equa-
tion and apply the divergence-free condition to obtain the
following Poisson equation for pressure, viz.

1
ρ

∂ 2 p
∂xi∂ xi

=− ∂ui

∂x j

∂u j

∂ xi
+2Ωω1 , (1)

where ω1
def
= ∂ u3/∂x2−∂u2/∂x3 is the streamwise vorticity.

The boundary condition of the pressure field reads

∂ p
∂x2

= ρν
∂ 2u2

∂ x2
2

at x2 =±h . (2)

The pressure can be further decomposed into a rotation-
induced component pr and a convection-induced compo-
nent pc, governed by the following two Poisson equations,
respectively: 

1
ρ

∂ 2 pr

∂xi∂xi
=2Ωω1 ,

1
ρ

∂ 2 pc

∂xi∂xi
=− ∂ui

∂ x j

∂ u j

∂xi
.

(3)

Correspondingly, the boundary condition (2) can be decom-
posed into

∂ pr

∂x2
= 0

∂ pc

∂x2
= ρν

∂ 2u2

∂x2
2

 at x2 =±h . (4)

Because Eqs. (3)–(4) are linear with respect to the pressure,
p ≡ pr + pc holds strictly.

Figure 2 compares the profiles of the root-mean-square
(RMS) of pressure fluctuations pr,rms and pc,rms at Roτ =
150. As shown in the figure, the magnitude of pr,rms is sig-
nificantly larger than that of pc,rms at Roτ = 150, indicating
the dominance of rotation-induced over convection-induced
pressure fluctuations. In order to understand this dominant
effect of pr,rms, Figs. 3(a) and 3(b) compare the profiles of
ω1,rms and pr,rms at various rotation numbers, respectively.
As shown in Fig. 3(a), in general, the magnitude of ω1,rms
is insensitive to Roτ . From Eq. (3), it is clear that the role
of system rotation (as indicated by Ω) is to linearly amplify
the conversion of the streamwise vorticity fluctuations ω ′

1
into the rotation-induced pressure fluctuations p′r. Because
the magnitude of ω ′

1 is insensitive to Roτ , the value of pr,rms
grows almost linearly with respect to Roτ .

Effect of System Rotation on Budget Balance
of Reynolds Stresses

In order to study the effect of strong pressure fluctua-
tions on the Reynolds stresses, we consider the following
transport equation of Reynolds stresses

∂Ei j

∂ t
= 0 = Pi j +Ci j +Πr

i j +Πc
i j + εi j +Ti j +Di j . (5)
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Figure 3. Profiles of (a) ω1,rms and (b) pr,rms at various
rotation numbers.
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Figure 4. Profiles of the Coriolis term C+
i j , rotation-

induced pressure term Πr+
i j and effective rotation term Ceff+

i j
in the transport equation of (a) ⟨u′2u′2⟩+ and (b) ⟨u′3u′3⟩+ at
Roτ = 150.

Here, Pi j , Ci j , Πr
i j , Πc

i j , εi j , Ti j , and Di j denote the pro-
duction term, Coriolis term, rotation-induced pressure term,
convection-induced pressure term, viscous dissipation term,
turbulent diffusion term, and viscous diffusion term, respec-
tively, which are defined as

Pi j =−
(
⟨u′iu′k⟩

∂ ⟨u j⟩
∂xk

+ ⟨u′ju′k⟩
∂ ⟨ui⟩
∂xk

)
, (6)

Ci j = 2Ω(ε1ik⟨u′ju′k⟩+ ε1 jk⟨u′iu′k⟩) , (7)

Πr
i j =− 1

ρ

⟨
u′i

∂ p′r
∂x j

+u′j
∂ p′r
∂ xi

⟩
, (8)

Πc
i j =− 1

ρ

⟨
u′i

∂ p′c
∂x j

+u′j
∂ p′c
∂xi

⟩
, (9)

εi j =−2ν

⟨
∂u′i
∂xk

∂u′j
∂xk

⟩
, (10)

Ti j =−
∂ ⟨u′iu′ju′k⟩

∂ xk
, (11)

Di j = ν
∂ 2⟨u′iu′j⟩
∂xk∂ xk

. (12)

Both the Coriolis term Ci j and the rotation-induced
pressure term Πr

i j are direct consequences of system rota-
tion. In order to evaluate the general effect of system ro-
tation on the transport equation of Reynolds stresses, it is
useful to further define an effective (or, total) rotation ter-
m Ceff

i j
def
= Ci j +Πr

i j . To demonstrate the necessity of intro-
ducing the concept of Ceff

i j in the analysis, Fig. 4 compares

the profiles of the effective rotation term Ceff+
i j , Coriolis ter-
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Figure 5. Profiles of budget terms in the transport equa-
tion of Reynolds normal stress ⟨u′1u′1⟩+ in (a) non-rotating
(Roτ = 0) and (b) streamwise-rotating (Roτ = 150) turbu-
lent channel flows.

m C+
i j and rotation-induced pressure term Πr+

i j for ⟨u′2u′2⟩+

and ⟨u′3u′3⟩+ at Roτ = 150. Here, superscript “+” denotes
physical quantities non-dimensionalized using uτ and ν/uτ
as the characteristic velocity and length scales, respectively.
As shown in the figures, the net rotation effect as represent-
ed by the effective rotation term Ceff+

i j is much smaller than
either C+

i j or Πr+
i j . The effect of the system rotation on the

transport of Reynolds stresses would be misidentified if on-
ly the Coriolis term C+

i j was considered. For example, if the
attention is solely paid to the Coriolis term C+

33, it would
lead to a wrong conclusion that ⟨u′3u′3⟩+ loses energy due
to the effect of rotation. In fact, the effective rotation ter-
m Ceff+

33 is positive, indicating the net effect of streamwise
system rotation is to ‘power’ ⟨u′3u′3⟩+.

Figures 5–7 compare the budget terms in the transport
equations of Reynolds normal stresses of the non-rotating
(Roτ = 0) and streamwise-rotating (Roτ = 150) turbulen-
t channel flows. As is evident in Figs. 5(a), 6(a) and 7(a),
in the non-rotating channel flow, the dissipation terms ε+11,
ε+22 and ε+33 are the dominant sinks in the transport equations
of ⟨u′1u′1⟩+, ⟨u′2u′2⟩+ and ⟨u′3u′3⟩+, respectively. The func-
tion of these dissipation terms is to balance either the pro-
duction term P+

11 or convection-induced pressure terms Πc+
22

and Πc+
33 in a non-rotating channel flow, an observation that

is consistent with the result of Mansour et al. (1988).
The budget balance of Reynolds normal stresses in a

fast rotating channel flow is fundamentally different from
that in a non-rotating channel flow. As shown in figure 5(b),
in comparison with the non-rotating case (Roτ = 0), al-
though the magnitude of ε+11 is slightly larger at the wall
in the fast rotating case (Roτ = 150), it drops more rapid-
ly as the wall-normal distance increases beyond x2/h =
−0.97. Furthermore, the effective rotation term Ceff+

11 be-
comes the dominant sink in a considerably large region
(−0.97 < x2/h <−0.55) at Roτ = 150. The energy drained
from ⟨u′1u′1⟩+ by Ceff+

11 is fed to ⟨u′2u′2⟩+ and ⟨u′3u′3⟩+. As
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Figure 6. Profiles of budget terms in the transport equa-
tion of Reynolds normal stress ⟨u′2u′2⟩+ in (a) non-rotating
(Roτ = 0) and (b) streamwise-rotating (Roτ = 150) turbu-
lent channel flows.
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Figure 7. Profiles of budget terms in the transport equa-
tion of Reynolds normal stress ⟨u′3u′3⟩+ in (a) non-rotating
(Roτ = 0) and (b) streamwise-rotating (Roτ = 150) turbu-
lent channel flows.

shown in figures 6(b) and 7(b), the effective rotation terms
Ceff+

22 and Ceff+
33 are both positively valued, acting as sources

for ⟨u′2u′2⟩+ and ⟨u′3u′3⟩+, respectively. In consequence, in
comparison with the non-rotating case, the magnitudes of
viscous dissipation rates ε+22 and ε+33 are amplified in the
same region to balance the additional TKE transported from
the streamwise to the spanwise and wall-normal velocity
fluctuations in a fast streamwise-rotating channel flow.
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Figure 8. Profiles of the effective rotation terms (a) Ceff+
22

and (b) Ceff+
33 at various rotation numbers. The arrow points

to the direction of an increasing rotation number.

To deepen the study of the rotating effects on the mag-
nitude of the effective rotation term, Fig. 8 compares the
profiles of Ceff+

22 and Ceff+
33 at various rotation numbers. As

shown in the figure, the magnitudes of both Ceff+
22 and Ceff+

33
increase monotonically as the rotation number increases, in-
dicating that the system rotation tends to enhance the wall-
normal and spanwise velocity fluctuations, further promot-
ing the formation and motion of large-scale TGL vortices in
a cross-stream (x2–x3) plane. This explains the previous ob-
servation that TGL vortices become more active and stream-
wise elongated as the rotation number increases (Yang &
Wang, 2018).

Effect of System Rotation on Budget Balance
of Energy Spectra

The transport of Reynolds stresses can be studied pre-
cisely in not only the physical space but also the spectral
space. One of the major objectives of this research is on the
elucidation of the mechanisms underlying the streamwise-
elongated TGL vortices observed in Yang & Wang (2018).
To this purpose, we define the Fourier transform of an arbi-
trary variable ϕ(x1,x2,x3, t) in the streamwise direction as

ϕ̂(k1,x2,x3, t) =
1
L1

∫ L1

0
ϕ(x1,x2,x3, t)e−ik1x1 dx1 , (13)

where i =
√
−1 is the imaginary unit, and k1 = n1k01 is the

streamwise wavenumber. Here, n1 ∈ [−N1/2,N1/2− 1] is
an integer, and k01 = 2π/L1 is the lowest positive wavenum-
bers in the streamwise direction. By applying the above
Fourier transform to the momentum equation that govern-
s the instantaneous velocity fluctuations and after some
derivation, the following transport equation of Reynolds
stresses in the spectral space is obtained

∂ Ẽi j

∂ t
= 0 = P̃i j +C̃eff

i j + Π̃c
i j + ε̃i j + D̃i j + T̃i j . (14)

Here, Ẽi j = Re{R̂i j(k1,x2)} = Re{û′i
∗
û′j} is the co-

spectrum between u′i and u′j, where R̂i j is the Fouri-
er coefficient of the two-point velocity correlation func-
tion Ri j(r1,x2) = ⟨u′i(x1,x2,x3, t)u′j(x1 + r1,x2,x3, t)⟩, su-
perscript ∗ and Re{} denote the conjugate and real part of a
complex number, respectively. The overline represents time
and spanwise averaging. The budget terms on the right hand
side (RHS) of Eq. (14) are defined as

P̃i j = Re
{
−û′jû

′
2
∗ ∂ ⟨ui⟩

∂x2
− û′i

∗
û′2

∂ ⟨u j⟩
∂x2

}
, (15)

C̃eff
i j = Re

−2Ω
(

εi1kû′jû
′
k
∗
+ ε j1kû′i

∗
û′k

)

− 1
ρ

ik1

(
p̂′r

∗
û′jδi1 − p̂′rû′i

∗
δ j1

)

− 1
ρ

∂ p̂′r
∗

∂x2
û′jδi2 +

∂ p̂′r
∂x2

û′i
∗
δ j2


− 1

ρ

∂ p̂′r
∗

∂x3
û′jδi3 +

∂ p̂′r
∂x3

û′i
∗
δ j3

 , (16)

Π̃c
i j = Re

− 1
ρ

ik1

(
p̂′c

∗
û′jδi1 − p̂′cû′i

∗
δ j1

)

− 1
ρ

∂ p̂′c
∗

∂x2
û′jδi2 +

∂ p̂′c
∂x2

û′i
∗
δ j2


− 1

ρ

∂ p̂′c
∗

∂x3
û′jδi3 +

∂ p̂′c
∂x3

û′i
∗
δ j3

 , (17)

ε̃i j = Re

−2ν

k2
1û′i

∗
û′j +

∂ û′i
∗

∂x2

∂ û′j
∂x2

+
∂ û′i

∗

∂x3

∂ û′j
∂x3

 ,

(18)

D̃i j = Re

ν
∂ 2û′i

∗
û′j

∂x2
2

 , (19)

T̃i j = Re

−ik1

(
û′jû

′
iu
′
1
∗
− û′i

∗
û′ju

′
1

)

−
∂ û′iu

′
2
∗

∂x2
û′j −

∂ û′ju
′
2

∂x2
û′i
∗

−
∂ û′iu

′
3
∗

∂x3
û′j −

∂ û′ju
′
3

∂x3
û′i
∗
 . (20)

To further study the effect of system rotation on the
scales of TGL vortices, the transport equations of energy
spectra Ẽ+

11, Ẽ+
22 and Ẽ+

33 (of three Reynolds normal stress
components) need to be investigated. Figure 9 compares
the pre-multiplied budget terms in the transport equation
of Ẽ+

11 in non-rotating (Roτ = 0) and streamwise-rotating
(Roτ = 150) channel flows at x2/h = −0.5, where the flow
field is significantly influenced by TGL vortices. From
Fig. 9, it is seen that the streamwise wavelength corre-
sponding to the peak of the pre-multiplied production ter-
m k+1 P̃+

11 is approximately λ1/h = 200 at Roτ = 150, but
is only 2.6 at Roτ = 0. This indicates that the TKE is pro-
duced at larger wavelengths in a fast streamwise-rotating
channel due to the occurrence of large-scale TGL vortices.
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Figure 9. Pre-multiplied budget terms in the transport e-
quation of spectrum Ẽ+

11 at x2/h =−0.5 for (a) non-rotating
(Roτ = 0) and (b) streamwise-rotating (Roτ = 150) turbu-
lent channel flows.
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Figure 10. Pre-multiplied budget terms in the transport e-
quation of spectrum Ẽ+

22 at x2/h =−0.5 for (a) non-rotating
(Roτ = 0) and (b) streamwise-rotating (Roτ = 150) turbu-
lent channel flows.
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Figure 11. Pre-multiplied budget terms in the transport e-
quation of spectrum Ẽ+

33 at x2/h =−0.5 for (a) non-rotating
(Roτ = 0) and (b) streamwise-rotating (Roτ = 150) turbu-
lent channel flows.

Figure 9(a) shows that in the non-rotating channel, the
convection-induced pressure term Π̃c+

11 and dissipation term
ε̃+11 are the two dominant terms consuming the TKE. The
characteristic wavelength corresponding to the mode of ei-
ther Π̃c+

11 or ε̃+11 is λ1/h = 1.2 (or equivalently, 216 wal-
l units). In the streamwise-rotating channel, as shown in
Fig. 9(b), the dissipation term remains important, but the
convection-induced pressure term Π̃c+

11 becomes negligible.
The role of Π̃c+

11 in a non-rotating channel flow is replaced
by the effective rotation term C̃eff+

11 in a streamwise-rotating
channel flow, an observation that is consistent with the anal-
ysis of the budget balance of ⟨u′1u′1⟩+ in the physical space
based on Fig. 5. As shown in Fig. 9(b), there are two nega-
tively valued peaks in the profile of k+1 C̃eff+

11 at Roτ = 150.
The primary peak occurs at λ1/h = 100 (or equivalently,
1.8 × 104 wall units), and the secondary peak occurs at
a much smaller wavelength of λ1/h = 8 (or equivalently,
1440 wall units). The primary peak of k+1 C̃eff+

11 corresponds
to the streamwise scale of TGL vortices observed by Yang
& Wang (2018). The secondary peak of k+1 C̃eff+

11 collocates
with the peaks of the pre-multiplied turbulent diffusion term
k+1 T̃+

11 and viscous dissipation term k+1 ε̃+11. From Figs. 9(a)
and 9(b), it is clear that the value of k+1 T̃+

11 is positive and
negative at small and large wavelengths, respectively, indi-
cating the transport of TKE from large to small wavelength-
s. For the fast streamwise-rotating channel flow case shown
in Fig. 9(b), the TKE transferred to the streamwise velocity
fluctuations at small wavelength (λ1/h= 8) by the turbulen-
t diffusion term T̃+

11 is then partially drained by the viscous
dissipation term ε̃+11 and partially carried away by the effec-
tive rotation term C̃eff+

11 to feed Ẽ+
22 and Ẽ+

33 according to the
above discussions.

Figures 10 and 11 show the pre-multiplied budget
terms in the transport equations of streamwise spectra Ẽ+

22
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and Ẽ+
33, respectively. The results of the non-rotating

(Roτ = 0) and streamwise-rotating (Roτ = 150) channel
flows at x2/h=−0.5 are compared. As shown in Figs. 10(a)
and 11(a), in the non-rotating channel flow, the convection-
induced pressure terms k+1 Π̃c+

22 and k+1 Π̃c+
33 are dominan-

t sources in the transport equations of Ẽ+
22 and Ẽ+

33, re-
spectively. In contrast, as shown in Fig. 10(b), in the
streamwise-rotating channel flow, k+1 Π̃c+

22 is positively val-
ued at small wavelengths but becomes negatively valued at
large wavelengths. The profile shape of k+1 Π̃c+

22 is almost a
mirror image of that of k+1 T̃+

22 in Fig. 10(b), indicating that
the kinetic energy of the wall-normal velocity fluctuation-
s constructed and destructed by k+1 T̃+

22 at small and large
wavelengths, respectively, is directly balanced by k+1 Π̃c+

22
(at the same wavelengths). Also from Fig. 10(b), the mag-
nitude of the k+1 C̃eff+

22 is comparable to that of k+1 ε̃+22, with
the difference that k+1 ε̃+22 is negatively valued and peak-
s at a smaller wavelength of λ1/h = 7 (corresponding to
λ+

1 = 1260), while k+1 C̃eff+
22 is positively valued and peak-

s at a larger wavelength of λ1/h = 50 (corresponding to
λ+

1 = 9000). The physical explanation is that the rotating
effect tends to enhance the wall-normal velocity fluctuation-
s at large streamwise wavelengths to form TGL vortex mo-
tions. This part of energy constructed by C̃eff+

22 is transport-
ed to small wavelengths by the combined effects of Π̃c+

22 and
T̃ c+

22 through the convection and turbulent diffusion mecha-
nisms, and eventually destructed by ε̃+22 through the viscous
dissipation.

By comparing Fig. 10(b) with Fig. 9(b), it is clear that
the values of k+1 C̃eff+

11 and k+1 C̃eff+
22 are negative and positive,

respectively, at all wavelengths. Furthermore, as shown in
Fig. 11(b), although the profile of k+1 C̃eff+

33 exhibits a com-
plex pattern, its value is mostly positive, especially at small
and moderate wavelengths. This observation in the spec-
tral space further confirms the previous conclusion (drawn
in the physical space based on the analysis of Figs. 5–7) that
the general effect of streamwise system rotation is to extract
TKE from the streamwise component ⟨u′1u′1⟩+ to the wall-
normal and spanwise components ⟨u′2u′2⟩+ and ⟨u′3u′3⟩+ of
Reynolds normal stresses. Figure 11(b) shows that in the
transport equation of Ẽ+

33, the convection-induced pressure
term Π̃c+

33 is still an important source at small wavelength-
s for λ1/h < 20 at Roτ = 150. At large wavelengths, the
spanwise velocity fluctuations gain energy from the effec-
tive rotation term C̃eff+

33 and turbulent diffusion term T̃+
33 . In

both non-rotating and rotating channel flows, the destruc-
tion of TKE associated with ⟨u′3u′3⟩+ is dominated by the
dissipation term ε̃+33 at all wavelengths.

Conclusions
The transport equations of Reynolds stresses are stud-

ied in both physical and spectral spaces to investigate the
dynamics of TGL vortices. The pressure field is decom-
posed linearly into a rotation-induced and a convection-
induced components (p′r and p′c, respectively), governed by
two independent Poisson equations. The Coriolis force acts
on the pressure field as a source term in the Poisson equation
that governs the value of p′r. As the rotation number increas-
es, the magnitude of pr,rms increases linearly, and becomes
dominant at a very high rotation number.

In the transport equation of Reynolds stresses, the
rotation-induced pressure term Πr+

i j is absent in a non-

rotating channel flow, however, in a streamwise-rotating
channel flow, its influence on the flow field increases rapid-
ly as the rotation number increases. In the budget balances
of ⟨u′2u′2⟩+ and ⟨u′3u′3⟩+, the behaviors of the Coriolis ter-
m C+

i j and rotation-induced pressure term Πr+
i j are oppo-

site of each other, canceling out their net contribution to the
transport of Reynolds stresses. As a result, the effect of the
system rotation on the transport of Reynolds stresses can
be completely misidentified if only the Coriolis term C+

i j is

considered. As a remedy, an effective rotation term Ceff+
i j is

defined as the summation of C+
i j and Πr+

i j . The proposed ef-
fective rotation term is able to facilitate a precise diagnose
of the general effect of streamwise system rotation on the
transport of Reynolds stresses in both physical and spectral
analyses.

The effective rotation term is responsible for sustain-
ing TGL vortices in a streamwise-rotating channel flow.
From the analyses of transport equations of Reynolds nor-
mal stresses, it is discovered that the effective rotation term
extracts energy from ⟨u′1u′1⟩+ to feed ⟨u′2u′2⟩+ and ⟨u′3u′3⟩+.
The magnitudes of both Ceff+

22 and Ceff+
33 increase mono-

tonically as the rotation number increases, indicating that
the system rotation tends to enhance the wall-normal and s-
panwise velocity fluctuations, promoting the formation and
motion of large-scale TGL vortices in the cross-stream di-
rection. Further analyses in the spectral space indicate that
the energy transfer among three Reynolds normal stresses
occurs at large wavelengths. In contrast to a non-rotating
channel flow, a significant amount of TKE is produced at
large wavelengths by the streamwise velocity fluctuations in
a fast streamwise-rotating channel due to the occurrence of
large-scale TGL vortices. The TKE produced by TGL vor-
tices is then partially drained by the dissipation term ε̃+11 and
partially carried by the effective rotation term C̃eff+

11 to en-
hance the wall-normal and spanwise energy spectra Ẽ+

22 and
Ẽ+

33. The characteristic wavelengths corresponding to the
modes of pre-multiplied effective rotation terms k+1 C̃eff+

22
and k+1 C̃eff+

33 increase monotonically with an increasing ro-
tation number, further indicating that the streamwise system
rotation tends to elongate the TGL vortices in the stream-
wise direction.
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