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ABSTRACT
We explore the ability of a novel passive technology –

anisotropic permeable substrates – to reduce turbulent skin-
friction. We perform direct numerical simulations (DNSs)
of channel flows bounded by permeable substrates, where
the flow within the permeable medium is modelled using
Brinkman’s equation. The DNS results confirm theoretical
predictions, and the obtained drag reduction curves are sim-
ilar to those observed for riblets. For small permeabilities,
the performance is linear with the difference between the
streamwise and spanwise permeability lengthscales. This
linear drag reduction regime breaks down for a critical value
of the wall-normal permeability, beyond which the perfor-
mance begins to degrade. We observe that the degradation
is due to the formation of spanwise-coherent structures, as-
sociated to a Kelvin–Helmholtz-like instability of the mean
flow. With the substrate configurations under study, the
drag reduction can be as large as ≈ 20− 25% at a friction
Reynolds number Reτ = 180.

INTRODUCTION
The high skin friction experienced in turbulent flows

represents a problem for several engineering applications.
In this study, we present the potential of anisotropic
permeable substrates to reduce turbulent skin friction,
as recently proposed by Abderrahaman-Elena & Garcı́a-
Mayoral (2017).

Assuming that the shift of the logarithmic mean ve-
locity profile with respect to a smooth-wall flow, ∆U+, is
Reynolds-number independent (Spalart & McLean, 2011;
Garcı́a-Mayoral et al., 2019), the drag reduction or relative
decrease of the friction coefficient is

DR = 1−1/
(
1+∆U+/U+

δ0

)2
, (1)

where Uδ0 is the free-stream velocity for a smooth-wall
flow and depends on the friction Reynolds number Reτ .
Throughout the paper, we give results for drag reduction
in terms of ∆U+, so that they are Reτ -independent.

Previous studies have shown that streamwise-
preferential complex surfaces can reduce drag in turbulent
flows. This reduction has recently been reviewed in
Garcı́a-Mayoral et al. (2019) as a virtual-origin effect for
vanishingly small surface textures. The reduction of drag

is essentially caused by an offset between the positions
of the virtual, equivalent smooth walls perceived by the
mean flow and by the overlying turbulence, but turbulence
remains otherwise smooth-wall-like (Luchini et al., 1991;
Jiménez, 1994; Luchini, 1996; Gómez-de-Segura et al.,
2018). ∆U+ is then

∆U+ ≈ `+U − `+T , (2)

where `+U is the depth below the reference plane of the vir-
tual origin perceived by the mean flow, and `+T the depth of
that perceived by turbulence. Luchini (1996) suggested that
the virtual origin for turbulence could be identified as the
origin experienced by the quasi-streamwise vortices. If the
cross flow induced by quasi-streamwise vortices is hindered
more than the streamwise mean flow, the vortices are, com-
pared to a smooth wall, ‘pushed away’ from the apparent
smooth wall perceived by the mean flow. As a result, the
local momentum flux decreases, and the drag is reduced.

Recently, Abderrahaman-Elena & Garcı́a-Mayoral
(2017) suggested that streamwise-preferential anisotropic
permeable substrates could produce such an effect. They
derived analytical expressions for the virtual origins based
on a Darcy-Brinkman model for the flow within the perme-
able substrates,

∇p =−νK−1u+ν∇
2u, (3)

where u = (u,v,w) is the velocity vector, ν is the viscosity
and K is the permeability tensor, with components Kx, Ky
and Kz along its principal directions. The Brinkman term,
ν∇2u, accounts for diffusion effects on scales larger than
those integrated through volume averaging into Darcy’s
term, νK−1u. Abderrahaman-Elena & Garcı́a-Mayoral
(2017) solved equation (3) in response to an overlying ho-
mogeneous shear, obtaining

`+U =

√
K+

x tanh

(
h+√
K+

x

)
, `+T =

√
K+

z tanh

(
h+√
K+

z

)
.

(4)
They concluded that the highest performance for a given
anisotropic material would be achieved for sufficiently deep
substrates, where `+U ≈

√
K+

x and `+T ≈
√

K+
z . The linear

1



11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11)
Southampton, UK, July 30 to August 2, 2019

10−1 100 101

0

0.07

0.14

√
K+

Br

ω
+ i m

a
x

No
K-H

K-H
onset

Fully
K-H

Figure 1. Amplification of the most unstable mode, ω
+
imax

,

as a function of the fitted permeability length
√

K+
Br ≈√

K+
y for various permeable substrates. – – –, h+ = 10;

——, h+ = 100; from blue to red, anisotropy ratios
Kx/Ky = 1, 10, 100, 1000. The green and red lines define
the thresholds for the degradation regime obtained from the
DNS results: the green line corresponds to approximately
the optimum ∆U+ (

√
K+

y ≈ 0.38), and the red line corre-

sponds to approximately the zero ∆U+ line (
√

K+
y ≈ 0.6),

after which drag increases.

regime of equation (2) would then be characterised by

∆U+ ≈
√

K+
x −

√
K+

z . (5)

To maximise drag reduction, we are thus interested in
highly anisotropic materials with large K+

x and small K+
z .

The linear regime of equations (2) and (5) is only
valid as long as the surface texture is small compared to
the near-wall turbulence structures. As the texture size
increases, additional deleterious effects set in, degrading
the drag-reducing behaviour and eventually leading to a
drag increase. The development of Kelvin–Helmholtz
rollers, which are ubiquitous over permeable substrates
(Breugem et al., 2006; Kuwata & Suga, 2016; Zampogna
& Bottaro, 2016), have been proposed as a key drag-
degrading mechanism (Abderrahaman-Elena & Garcı́a-
Mayoral, 2017; Gómez-de-Segura et al., 2018). Based on
a linear stability analysis, Gómez-de-Segura et al. (2018)
estimated values for K at which Kelvin–Helmholtz instabil-
ities would develop. For streamwise-preferential substrates,
the instability is essentially governed by the wall-normal
permeability, K+

y . This is illustrated in figure 1, where the
amplification of the most unstable mode for different sub-
strates is captured by the parameter

K+
Br ≈ K+

y tanh(
√

2K+
x /9) tanh2(h+/

√
12K+

y ), (6)

which in practical cases reduces to

K+
Br ≈ K+

y . (7)

From figure 1, Gómez-de-Segura et al. (2018) defined a
tentative threshold for the onset of drag-degrading rollers.

Using the DNS data, the threshold values were reassessed
in Gómez-de Segura & Garcı́a-Mayoral (2019) and set to√

K+
y = 0.38−0.6.

METHODOLOGY
We conduct DNSs in doubly-periodic channels of

height 2δ delimited by two identical permeable substrates
of thickness h. The DNS code, adapted from Fairhall &
Garcı́a-Mayoral (2018), solves the incompressible Navier-
Stokes equations, with the density taken to be unity for sim-
plicity. All simulations are conducted at a fixed friction
Reynolds number Reτ = uτ δ/ν = 180 by imposing a con-
stant mean pressure gradient in y ∈ [0,2δ ]. The kinematic
viscosity is ν = 1/2870 and we use a smooth-wall chan-
nel with the same mean pressure gradient as reference. The
spatial discretisation is spectral in the wall-parallel direc-
tions x and z, with 2/3 rule de-aliasing, and uses second-
order centred finite differences on a staggered grid in the
wall-normal direction. The computational domain is of size
2π × π × 2 in the streamwise, spanwise and wall-normal
directions, respectively. A grid with 192×192×153 collo-
cation points with grid stretching in y is used, which in vis-
cous units gives a resolution of ∆x+ ≈ 5.9, ∆z+ ≈ 2.9, and
∆y+ ' 0.3 near the wall and ∆y+ ' 3 in the centre of the
channel. For the temporal integration we use a fractional-
step, Runge-Kutta discretisation, semi-implicit in the vis-
cous terms and explicit in the advective terms. Once the
statistically steady state had been reached, statistics for each
simulation were obtained by averaging over approximately
100 eddy-turnovers.

The flow within the substrates was modelled using
equation (3). The simplicity of this model allows for its
analytical solution, which particularised at the substrate–
channel interface gives

û|y=0 = Cuu
dû
dy

∣∣∣∣
y=0

+ Cuw
dŵ
dy

∣∣∣∣
y=0

+ Cup p̂
∣∣
y=0 , (8a)

ŵ|y=0 = Cwu
dû
dy

∣∣∣∣
y=0

+ Cww
dŵ
dy

∣∣∣∣
y=0

+ Cwp p̂
∣∣
y=0 , (8b)

v̂|y=0 = Cvu
dû
dy

∣∣∣∣
y=0

+ Cvw
dŵ
dy

∣∣∣∣
y=0

+ Cvp p̂
∣∣
y=0 . (8c)

These are implemented as boundary conditions for the flow
within the channel. In equation (8) the hat denotes variables
in Fourier space. The coefficients Ci j depend on the struc-
ture of the permeable substrate through Kx, Ky, Kz and h, as
well as on the overlying flow through the streamwise and
spanwise wavenumbers, αx and αz.

RESULTS
As discussed above, the optimal substrate for

drag reduction would seek to maximise the difference√
K+

x −
√

K+
z to obtain a large effective slip, while main-

taining
√

K+
y as low as possible to inhibit the appearance of

drag-increasing Kelvin–Helmholtz rollers. Since both K+
y

and K+
z have a negative effect, we consider substrates with

K+
x > K+

z = K+
y .

We study three substrate configurations, characterised
by three different anisotropy ratios φxy =

√
Kx/Ky, with

φxy ≈ 3.5, 5.5 and 11.5. For our main set of simulations,
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Table 1. DNS parameters.
√

K+
x ,
√

K+
y and

√
K+

z are the streamwise, wall-normal and spanwise permeability lengths, h+ is
the thickness of the substrate, ∆U+ is the shift of the velocity profile in the logarithmic region, and DR180 and DR5000 are the
values of drag reduction for Reτ = 180 and Reτ = 5000, respectively, obtained using expression (1). The values DR5000 have
been calculated using the reference smooth-wall data from Lee & Moser (2015). The first three substrate configurations A, B
and C have thickness h = 100

√
Ky and different anisotropy ratios φxy. The last three substrate configurations, C′, C′′ and C′′′,

have φxy ≈ 11.4, as substrate C, but different thickness h/
√

Kx.

Cases
√

K+
x

√
K+

y

√
K+

z h+ Ub/Ubsm ∆U+ DR180 DR5000

Smooth 0 0 0 0 1.0 - - -

φxy =
√

Kx
Ky
≈ 3.6

A1 0.71 0.20 0.20 19.5 1.037 0.51 5.64 3.93
A2 1.00 0.28 0.28 28.1 1.045 0.68 7.26 5.08
A3 1.42 0.39 0.39 38.8 1.052 0.80 8.44 5.92
A4 1.74 0.48 0.48 48.1 1.041 0.54 6.10 4.25
A5 2.45 0.68 0.68 68.1 0.963 -0.68 -7.38 -4.99
A6 3.61 1.00 1.00 100.2 0.819 -3.02 -42.31 -26.58
A7 5.50 1.52 1.52 152.7 0.616 -6.59 -143.84 -76.46
A8 10.97 3.04 3.04 304.2 0.381 -11.03 -546.15 -194.20

φxy =
√

Kx
Ky
≈ 5.5

B1 1.00 0.18 0.18 18.0 1.053 0.84 8.63 6.06
B2 1.79 0.32 0.32 32.1 1.085 1.29 12.71 9.01
B3 2.12 0.39 0.39 39.0 1.086 1.31 12.93 9.17
B4 2.45 0.45 0.45 45.0 1.070 1.01 10.22 7.20
B5 3.61 0.66 0.66 65.7 0.979 -0.46 -5.24 -3.56
B6 5.48 1.00 1.00 100.0 0.792 -3.66 -56.35 -34.47
B7 10.89 1.99 1.99 198.4 0.517 -8.66 -261.34 -120.00

φxy =
√

Kx
Ky
≈ 11.4

C1 1.00 0.09 0.09 9.0 1.062 0.98 9.89 6.96
C2 1.73 0.15 0.15 14.0 1.106 1.67 16.01 11.45
C3 2.45 0.21 0.21 22.0 1.145 2.24 20.63 14.93
C4 3.6 0.32 0.32 32.0 1.178 2.84 25.10 18.38
C5 4.48 0.39 0.39 39.1 1.183 2.87 25.34 18.56
C6 5.47 0.48 0.48 47.9 1.152 2.34 21.38 15.50
C7 10.89 0.96 0.96 95.6 0.898 -2.21 -29.35 -18.92

h√
Kx

= 1.5

C′1 2.45 0.21 0.21 3.67 1.130 2.00 18.74 13.49
C′2 3.61 0.32 0.32 5.40 1.171 2.70 24.12 17.62
C′3 5.49 0.48 0.48 8.23 1.156 2.40 21.87 15.88
C′4 10.84 0.95 0.95 16.26 0.962 -0.90 -10.84 -7.27

h√
Kx

= 1.0

C′′1 3.61 0.32 0.32 3.61 1.154 2.42 22.02 15.99
C′′2 5.48 0.48 0.48 5.51 1.163 2.53 22.86 16.64
C′′3 7.01 0.62 0.62 7.01 1.127 1.90 17.93 12.88
C′′4 9.03 0.79 0.79 9.03 1.066 0.84 8.62 6.05
C′′5 10.85 0.95 0.95 11.03 1.001 -0.12 -1.32 -0.91

h√
Kx

= 0.5

C′′′1 2.45 0.21 0.21 1.22 1.063 0.93 9.46 6.65
C′′′2 3.62 0.32 0.32 1.86 1.091 1.36 13.35 9.48
C′′′3 5.47 0.48 0.48 2.74 1.133 2.04 19.11 13.77
C′′′4 7.01 0.62 0.62 3.50 1.153 2.39 21.81 15.83
C′′′5 9.03 0.79 0.79 4.52 1.129 1.95 18.34 13.19
C′′′6 10.83 0.95 0.95 5.42 1.092 1.30 12.88 9.13

the substrates have thickness h = 100
√

Ky , large enough for
the problem to become independent of h. An additional sub-
set of simulations was conducted to explore the effect of a
finite h on the substrate performance. For a given configura-
tion, i.e. a fixed φxy and h/

√
Ky , we have conducted various

simulations with increasing Reynolds number based on the
texture size, K+

x ∈ [0.5− 117]. The simulations are sum-
marised in table 1.

The virtual-origin model in equations (2) and (5) is
based on the idea that the near-wall cycle remains smooth-
wall-like, other than by being displaced a depth `T towards
the substrate. Given that the origin perceived by turbulence
is expected to be at y =−`T ≈−

√
Kz, throughout this sec-

tion results are scaled taking that as the reference for the

wall-normal height, with the friction velocity calculated at
y =−

√
Kz.

The drag-reduction curves from the main set of DNSs
are shown in figure 2. For small permeabilities, a linear
drag-reduction regime is observed. The prediction ∆U+ =

`+U − `+T ≈
√

K+
x −

√
K+

z of equation (5) agrees well with
the DNS results, and the three substrate configurations ex-
hibit roughly the same initial reduced slope in figure 2(b).
The breakdown of the linear regime of drag reduction, how-
ever, occurs for different values of

√
K+

x −
√

K+
z depending

on the substrate.

In contrast, when the lengthscale is represented in
terms of

√
K+

y , the parameter predicted to trigger the onset
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Figure 2. Drag reduction curves for substrates with different anisotropy ratios. , φxy ≈ 11.4; , φxy ≈ 5.5; and ,
φxy ≈ 3.6. The symbols correspond to DNSs listed in table 1. ∆U+ is represented versus (a) the streamwise permeability

lengthscale,
√

K+
x ; (b) its predicted value in the linear regime,

√
K+

x −
√

K+
z ; (c) the wall-normal permeability lengthscale,√

K+
y . (d) ∆U+, reduced with its predicted slope, versus the wall-normal permeability lengthscale,

√
K+

y . – – –, theoretical

prediction ∆U+ =
√

K+
x −

√
K+

z .

(a) (b) (c)

Figure 3. Instantaneous realisations of streamwise velocity at a plane parallel to the interface (y+ ≈ 2−3) for a given substrate
configuration with φxy ≈ 11.5. From left to right K+

x increases: (a) K+
x = 3, which lies on the linear regime of the drag reduction

curve; (b) K+
x = 30, which is beyond the breakdown; (c) K+

x = 117, which lies in the drag-increasing regime.

of Kelvin–Helmholtz-like rollers, the location of the break-
down coincides for all the curves, as shown in figure 2(c).
For all substrate configurations, the drag reduction is max-
imum for

√
K+

y ≈ 0.38 and the drag becomes greater than

for a smooth wall for
√

K+
y & 0.6.

The degradation of the performance is consistent with
the appearance of spanwise-coherent rollers. To illus-
trate how the overlying turbulence is modified as

√
K+

y
increases, figure 3 shows instantaneous realisations of u

immediately above the substrate–channel interface. For√
K+

y & 0.6, the drag-increasing rollers become prevalent
in the flow, outweighing the drag-reducing effect of the
streamwise slip and eventually leading to an increase of
drag.

The common linear drag reduction behaviour, ob-
served in figure 2(b), and its common breakdown, observed
in figure 2(c), are condensed in figure 2(d). This is done by
dividing ∆U+ from figure 2(c) by the slope for each curve
expected from equation (5) for K+

z =K+
y , i.e. φxy−1. Given
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Figure 4. Drag reduction curves for substrates with the same permeabilities but different substrate thickness. From blue to red,
representing decreasing thickness, cases C1-C7, C′1-C′7, C′′1-C′′7, and C′′′1-C′′′7, corresponding to h/

√
Kx = 8.8, 1.5, 1.0,

and 0.5. ∆U+ is represented versus (a) its theoretical value in the linear regime; (b) the wall-normal permeability lengthscale,√
K+

y ; (c) the fitted permeability lengthscale for the breakdown
√

K′+Br . (d) ∆U+, reduced with its predicted linear slope, versus√
K′+Br . – – –, theoretical prediction ∆U+ =

√
K+

x tanh(h+/
√

K+
x )−

√
K+

z .

that in this equation ∆U+ depends only on φxy and
√

K+
y ,

the general collapse suggested by this figure can be used to
estimate the performance of permeable substrates different
to those explored in this work. Considering that the max-
imum ∆U+ in figure 2(d) occurs for

√
K+

y |opt ≈ 0.38 and
is approximately 80% of that estimated by equation (5), the
maximum ∆U+ would depend only on the anisotropy ratio,

∆U+
max ≈ 0.8×0.38×

(
φxy−1

)
. (9)

For the substrate with the largest φxy considered here,
φxy ≈ 11.5, the obtained ∆U+ corresponds to DR ≈ 25%
at Reτ = 180. For substrates with different cross permeabil-
ities, φzy =

√
Kz/Ky 6= 1, it follows from equation (5) that

∆U+
max ≈ 0.8×0.38× (φxy−φzy).

The secondary set of simulations aims to explore the
effect of the substrate depth on ∆U+, and to test if the per-
formance could be improved by reducing the depth enough
for it to become a parameter in the problem. For this,
the same substrate of cases C1-C7 is studied with depths

h/
√

Kx = 1.5, 1.0, and 0.5. From equations (4), we can
expect shallower substrates to have smaller `+U and `+T , as
the hyperbolic tangent terms become smaller than unity.
This would reduce the slope of the ∆U+ curve in the lin-
ear regime and be an adverse effect. However, a reduced
depth would also have the beneficial effect of making the
substrate more robust to the onset of Kelvin–Helmholtz-
like rollers, as at a given Reynolds number (i.e.

√
K+

x ,√
K+

y ) equation (6) would predict a smaller
√

K+
Br . Note

also that
√

K+
Br is a parameter empirically fitted to the re-

sults from the linear stability model, and that the actual re-
sults show that shallower substrates have in fact a delayed
Kelvin–Helmholtz onset in terms of

√
K+

Br , as shown in fig-
ure 1.

The results for ∆U+ for the shallow substrates of the
secondary set of simulations are portrayed in figure 4, com-
pared with the corresponding deep substrate from the main
set, cases C1-C7. Given that all of our substrates are more
permeable in x, the first terms to experience the effect of
a finite h in equations (4) and (6) are those where h ap-
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pears scaled with
√

Kx. Note that if we had considered
values of h small enough for h/

√
Kz to be also small, we

would have `+U ≈ `+T ≈ h+, which would yield no drag-
reducing effect. For the values of h/

√
Kx considered, we

have h/
√

Ky = h/
√

Kz = 6, 11 and 17, so the correspond-
ing hyperbolic tangent terms in equations (4) and (6) are
still essentially unity. This can be appreciated, for instance,
in figure 4(a), where the predicted slope in the linear regime
has been adjusted for the effect of h+ on the streamwise slip,
`+U ≈

√
K+

x tanh(h+/
√

K+
x ), but the spanwise slip remains

essentially `+T ≈
√

K+
z . Figure 4(b), however, shows that√

K+
y is no longer adequate to parametrise the onset of the

degradation. Panel (c), in turn, suggests that a suitable al-
ternative is

√
K′+Br =

√
K+

y tanh(h+/(9
√

K+
y )), and that the

optimum value is still
√

K′+Br ≈ 0.38, as in figure 2. All the
curves can be once more collapsed by reducing ∆U+ with
its predicted slope in the linear regime and expressing the
Reynolds number in terms of

√
K′+Br , as is done in panel

(d). This suggests that the optimum performance for shal-
low substrates can also be predicted and would be ∆U+

max ≈
0.8×0.38× [φxy tanh(h/

√
Kx)−φzy]/ tanh(h/9

√
Ky ). Note,

however, that ∆U+
max decreases slightly as the substrate

depth is reduced, as can be appreciated in panel (a), and
that even if there is a delay in the critical

√
K+

y in abso-
lute terms, as observed in panel (b), any gain in the relative
width of the ‘drag bucket’ region – the near-optimal range
– is insignificant, as is clear from panel (d).

CONCLUSIONS
We have explored the ability of streamwise-

preferential permeable substrates to reduce turbulent skin
friction through theoretical predictions and subsequent
DNSs of channel flows. For sufficiently small surface
textures, the drag reduction behaviour is linear with the
difference

√
K+

x −
√

K+
z . The effect of the substrates is

therefore reduced to a mere offset between the origins
for the mean flow and turbulence (Garcı́a-Mayoral et al.,
2019). As the texture size increases, we observe the
formation of drag-increasing spanwise-coherent rollers,
associated to a Kelvin–Helmholtz instability. These
structures appear to disrupt the near-wall cycle and modify
the near-wall turbulence, increasing the Reynolds stress
and, consequently, the drag. The instability, and hence the
breakdown, are found to be governed by the wall-normal
permeability. In particular, the optimum ∆U+ peaks at√

K+
y ≈ 0.38 independently of the substrate configuration.

For larger
√

K+
y , these drag-increasing spanwise rollers be-

come prevalent in the flow, outweighing the drag-reducing

effect of the streamwise slip and eventually leading to an
increase of drag.

The understanding gained from the present DNSs and
theoretical predictions can be used as a guideline to explore
further the drag-reducing ability of these substrates. The
present results suggest that such substrates may provide a
performance substantially better than riblets.
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