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ABSTRACT
The effect of geometry on the transverse galloping be-

havior of rectangular cylinders was studied experimentally
for Reynolds numbers between 1,000 and 10,000. In partic-
ular, a comparison was made between a rectangular cylin-
der with rounded corners and a smooth surface, and the
same baseline geometry with added surface topology syn-
thesized from two-dimensional Fourier-modes. The effect
of the amplitude of the topological surface height was in-
vestigated. From measurements of the normal (galloping
direction) force coefficient variation with angle-of-attack, it
was found that the added surface topology generally had a
destabilizing effect relative to the smooth cylinder. At the
lowest Reynolds number, the smooth cylinder was stable,
while the cylinders with added topology were unstable with
respect to galloping. For Reynolds numbers from 5,000 to
10,000, the added topology did not cause a similar instabil-
ity. However, there was a monotonic increase in the slope
of the normal force coefficient at zero angle-of-attack with
increasing surface height amplitude, thus moving the geom-
etry closer to the instability threshold. This effect dimin-
ished as Reynolds number increased. Overall, for the range
of parameters investigated herein, the cylinder with larger
topology amplitude exhibited more favorable galloping re-
sistance characteristics than the one with smaller topology.

INTRODUCTION
An elastically mounted cylinder with non-circular

cross section may be susceptible to a flow-induced oscilla-
tion known as galloping. This is a result of the fact that the
aerodynamic forces acting on the body vary with its orienta-
tion to the oncoming flow. This is described schematically
in Figure 1 for a rectangular cylinder elastically mounted in
the transverse direction (y-direction). The lift and the drag
forces, FL and FD, respectively, will be oscillatory in time
due to the oscillation of the body at a velocity ẏ. The normal
force coefficient in the y-direction is related to the lift and
the drag coefficients, viz:

Cy =
Fy

1/2ρU2
∞dl

=− 1
cos2 α

(CL cosα +CD sinα), (1)

where CL = FL/(1/2ρU2
reldl) and CD = FD/(1/2ρU2

reldl)
are the lift and the drag coefficients, respectively, α is angle-
of-attack, U∞ is the steady freestream velocity, Urel is the

instantaneous oncoming velocity relative to the cylinder, ρ

is the density, d is the cylinder width and l is the cylinder
span. If the oscillation is such that Cy increases with α , this
produces negative fluid damping and the structure may be-
come unstable. Mathematically, the necessary aerodynamic
condition for transverse galloping is ∂Cy/∂α > 0. This
phenomenon can affect structures such as ice coated power
lines, bridge decks and stalled wings (Blevins, 2001). An-
other type of structure that may be susceptible to galloping
is the parachute suspension line used in precision airdrop
systems. A typical suspension line has a non-circular cross
section that resembles a rectangle with side ratio c/d = 2
– 3 (where c is chord length) and rounded corners (Siefers
et al., 2013). The unsteady forces arising from potential gal-
loping of the suspension lines could contribute substantially
to the overall aerodynamic performance of the airdrop sys-
tem, since the lines have been shown to significantly affect
the total drag (Bergeron et al., 2009). Understanding the
galloping behavior of such a geometry is therefore funda-
mental to the prediction and mitigation of this aero-elastic
instability.
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Figure 1: Rectangular cylinder cross-section geometry
and forces acting on the body when oscillating at a
velocity ẏ in the transverse direction.

The goal of the present work is to investigate the gal-
loping behavior of rectangular cylinders that approximate
the geometry of parachute suspension line. While work
has been done in the past on the galloping behavior of
rectangular cylinders (e.g., Mannini et al., 2014; Washizu
et al., 1978; Parkinson & Brooks, 1961), these experiments
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are generally performed at Reynolds numbers in the range
Red > 2×104, where Red =U∞d/ν and ν is kinematic vis-
cosity. The relevant Reynolds number range for parachute
lines is 1,000 to 10,000 and is the focus of this study. Major-
ity of the previous studies regarding the galloping behavior
of rectangular cylinders considered only those with smooth
surfaces. However, a parachute line is often formed by
braiding smaller lines, therefore the surface is not smooth
but has variations in height. An investigation regarding this
type of geometry has not previously been performed, except
by Siefers et al. (2013) and Siefers et al. (2014) who ana-
lyzed only the vortex shedding frequencies and flow visual-
ization of parachute suspension line. This study investigates
the aerodynamic forces and galloping behavior of rectangu-
lar cylinders with smooth surfaces and those with an ideal-
ized surface topology with parameters approximating that
of a parachute line. Since the time scale of galloping oscil-
lations is often substantially higher than those of the dom-
inant flow features (e.g., vortex shedding) (Blevins, 2001),
the classical assumption of quasi-steady behavior allows the
results from static wind-tunnel tests to be used to describe
the variation of aerodynamic forces with α . Thus, mea-
surements of aerodynamic loads are performed on rigidly
mounted, static models with varying angle-of-attack.

EXPERIMENTAL SETUP
Experiments are conducted in a low-speed, low-

turbulence open return wind tunnel located in the Flow
Physics and Control Lab at Michigan State University. Af-
ter passing through a section of flow management devices
and a 10:1 contraction, the flow enters a 355 mm by 355
mm square test section that is 3 m long. The experiments
in this work span a Reynolds number range of Red = 1,100
to 10,000, which corresponds to U∞ ≈ 0.8 m/s to 7.5 m/s.
Over this range of freestream velocities, the mean turbu-
lence intensity in the test section is 0.1% for a frequency
range above 0.5 Hz. The mean freestream velocity is mea-
sured upstream of the model using a pitot-static tube.

The geometric parameters of the models under inves-
tigation are selected to approximate typical flat parachute
suspension line both with and without the surface topol-
ogy representative of braided cables. Based on the work of
Siefers et al. (2013), the basic cross-sectional dimensions of
the models used in this study are c/d = 2.5 and r/d = 0.5.
The surface topology of the braided cables is approximated
using two-dimensional Fourier-modes to describe the height
of the surface relative to the local nominal smooth cylinder.
The local surface height, ε , is defined as:

ε

εo
=

1
2

cos
[

2π

(
s

λs
+

z
λz

)]
+

1
2

cos
[

2π

(
s

λs
− z
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)]
,

(2)
where s and z are the wall-tangential and axial coordinates,
respectively, εo is the surface height amplitude, and λs and
λz are the wavelengths in the s and z directions, respectively.
The s-direction wavelength can also be defined as λs = P/n,
where n is the number of wavelengths in the s-direction and
P is the perimeter. In order to avoid discontinuities in the
surface, n is selected as an integer. This approach gives a
rigorous definition of the surface topology and allows sys-
tematic modification of specific topological parameters to
investigate their effects, as opposed to a heuristic method of
approximating a braided cable topology. To create a model

with added topology, the height variation with s and z is
superimposed on a nominal cross-sectional shape, such as
the one shown in Figure 1. The baseline model with topol-
ogy (Figure 2) has εo/d = 5%, n = 10 (λs/d = 0.61) and
λz/λs = 1.5, and approximates the geometry of 600 lb load-
capacity Dacron cable. The effect of surface height ampli-
tude is investigated using a second model with a higher am-
plitude of εo/d = 10% and the same n and λz. A smooth
model with no topology (εo/d = 0) is machined from alu-
minum, while the models with topology consist of a 3D
printed plastic outer sleeve around a solid aluminum spar.
The solid aluminum spar corrects any warping or twisting
in the 3D printed parts and maintains spanwise straightness
over time.
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Figure 2: Top and cross-sectional views of the cylinder
with εo/d = 5%, n = 10 and λz/λs = 1.5. The dashed
line indicates the nominal smooth cylinder.

The models have dimensions d = 20 mm and l = 320
mm, which spans the height of the test section between cir-
cular end plates. The end plates are fixed to the tunnel walls
and have a diameter of 15d and a 30◦ chamfered edge. In
addition to the large end plates, small end plates with 4.5d
diameter and 0.75 mm thickness were fixed to the ends of
the model. These small end plates were necessary to elim-
inate axial flow effects due to air being drawn into the test
section from the surroundings through the 20 mm× 30 mm
holes in the end plates. The hole in the upper end plates
allows the model connection shaft to pass through the end
plate and move freely. The nominal solid blockage of the
models at α = 0◦ is 5%.

Mean lift and drag forces on the models were mea-
sured using a custom designed one-component force bal-
ance (Feero et al., 2019). This force balance was de-
signed to allow accurate load measurement despite the low
Reynolds number range where commercially available load
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Figure 3: Lift and drag coefficient variation with angle-of-attack for the smooth and topology models. (a) & (c):
Red = 1,100. (b) & (d): Red = 10,000. For Red = 10,000, error bars are less than the marker size.

cells would be inadequate. To give a sense of scale, a drag
coefficient CD = 1 for the models used in this study cor-
responds to a drag force ranging from approximately 2.5
to 200 mN over Red = 1,100 to 10,000. The force bal-
ance is comprised of a four bar parallelogram linkage from
which the model is vertically suspended. A horizontal aero-
dynamic force on the model causes the linkage/model to
displace primarily in the horizontal direction, and this dis-
placement is measured by a non-contact laser displacement
sensor. Given the stiffness of the force balance, which de-
pends on model weight, it provides a resolution of 0.19 mN.
For CD or CL of 1, the typical accuracy of the force measure-
ments ranges from 0.2 mN to 2.3 mN over Red = 1,100 to
10,000. The entire force balance can be rotated to switch
between lift and drag measurement. Forces were measured
for a range of α , where the model angle was varied using a
step-servo motor with a resolution of 0.02◦.

RESULTS
The lift and drag forces were measured for −5◦ ≤ α ≤

15◦ at Red = 1,100, 2,500, 5,000, 7,500 and 10,000 for each
of the models. Results at Red = 1,100 and Red = 10,000 are
shown in Figure 3. For the smooth model at Red = 10,000,
CL varies with α in a way that is similar to a streamlined
body; that is, CL increases as α increases from 0◦ up to a
maximum at 3◦ and then experiences a moderate decrease.

A second peak occurs in CL at α = 6◦, which is followed by
CL increasing slightly with α . The εo/d = 5% model dis-
plays a similar trend, although the maximum CL is reduced
relative to the smooth case. This case also exhibits some
asymmetry between positive and negative angles of attack,
the reason for which is unknown. As the surface height
amplitude increases to εo/d = 10%, no peaks in CL are ob-
served but rather the slope of CL smoothly decreases and the
curve approximately plateaus at 6◦. For small values of α ,
below that of the first peak and the plateau, the slope of the
lift curve decreases with increasing topology amplitude.

A considerable change in the overall behavior in CL is
observed for all geometries when Red is reduced to 1,100.
At this Reynolds number, the slope in CL near α = 0◦ is neg-
ative for all but the smooth case. The peak CL magnitude is
decreased substantially to approximately 0.2, whereas val-
ues up to 1.2 occur at Red = 10,000. Unlike the topology
models, the smooth model experiences a nearly linear in-
crease with α over the entire range.

The drag coefficient at Red = 1,100 and 10,000 is
shown in Figure 3c and d, respectively. Examining first the
smooth geometry at Red = 10,000, CD is found to decrease
slightly as α increases from 0◦ to 2◦, beyond which it in-
creases monotonically with α . Over 0◦ ≤ α ≤ 15◦, CD in-
creases by more than a factor of two from approximately
0.5 to 1.2. When the εo/d = 5% surface topology is added,
the slope of CD becomes exclusively positive over the entire
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α range, and there is a small increase in CD relative to the
smooth case at α = 0◦. As εo/d increases from 5% to 10%,
the CD curve near α = 0◦ becomes substantially flatter and
CD at α = 0◦ increases from 0.6 to 0.8. Unlike CL, when
Red decreases to 1,100 there is not a reversal in the qualita-
tive behavior of CD. All the geometries maintain a slope in
CD that is approximately zero or positive over the α range.
The εo/d = 5% and εo/d = 10% CD curves are equivalent
within the uncertainty and are flatter than the smooth case
near α = 0◦.

The normal force coefficient, Cy, is computed from CD
and CL according to equation 1. The variation in Cy with
α for the entire Reynolds number range is shown in Fig-
ure 4 for each geometry. The solid lines in these plot are
curve fits computed using either a cubic spline or a sliding
cubic fit to smooth scatter in the data, where the latter case
is typically used for Red < 5,000. Comparing the results
at Red = 1,100 and 10,000 to Figure 3, it can be observed
that Cy follows a tend quite similar to −CL. Examining first
the results for the smooth geometry in Figure 4a, the slope
in Cy is negative at small angles-of-attack for all Red . This
slope becomes increasingly negative as Red increases from
1,100 to 5,000, after which it begins to decrease is magni-
tude while remaining negative. Recall from the introduc-
tion that a body is unstable with respect to galloping when
∂Cy∂α is positive. As Red increases above 1,100, a mini-
mum in Cy begins to emerge near α ≈ 3◦, with the value of
this minimum reaching peak magnitude at Red = 5,000 –
7,500 before decreasing at Red = 10,000. The double peak
behavior that was observed in CL for Red = 10,000 remains
present in Cy as double minima at approximately 3◦ and 6◦.
For Red ≥ 5,000, Cy shows very little variation with Red at
angles-of-attack above approximately 10◦.

Figure 4b shows the Cy results for the εo/d = 5% ge-
ometry. The addition of this surface topology leads to an
initially positive slope in Cy at Red = 1,100, and there-
fore a geometry that is unstable in the transverse gallop-
ing mode. As α increases, Cy reaches a peak after which
the slope becomes approximately constant and negative.
A transition occurs between Red = 1,100 and 2,500, as
∂Cy/∂α at α = 0◦ becomes negative, indicating stability.
For Red ≥ 2,500, the shape in Cy is similar to that of the
smooth geometry, however the magnitude of the Cy mini-
mum is reduced. The effect of Red on this minimum mag-
nitude is less than what is seen for the smooth case. A dou-
ble minima behavior in Cy, as was observed for the smooth
case at Red = 10,000, occurs for the εo/d = 5% geometry
for Red ≥ 7,500, with the second minimum occurring at a
larger α relative to smooth case.

The effect of the largest topology amplitude εo/d =
10% on Cy is shown in Figure 4c. For Red ≤ 2,500, the
shape of Cy is similar to that of Red = 1,100 for εo/d = 5%,
although the magnitude of the maximum is decreased and it
occurs at a slightly larger α . However, for Red ≥ 5,000, Cy
is distinctly different from both the smooth and εo/d = 5%
cases. At Red = 5,000, a minimum in Cy is still observed,
but Cy is substantially flatter at angles-of-attack near the
minimum. Increasing Red from 5,000 to 10,000 results in a
disappearance of this minimum, and a transition to Cy that
is constantly decreasing with increasing α . Unlike the other
two geometries, εo/d = 10% shows a a noticeable Reynolds
number effect on Cy at large angle-of-attack, where Cy in-
creases monotonically with increasing Red .

Figure 5 shows the effect of εo/d on the galloping cri-
terion evaluated at α = 0◦, ∂Cy/∂α|α=0, over the entire
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Figure 4: Reynolds number effect on Cy versus α .
Solid lines are curve fits to the data. Errorbars are less
than the marker size for Red ≥ 2500. (◦) Red = 1,100,
(�) 2,500, (�) 5,000, (5) 7,500, (.) 10,000.

Reynolds number range. The derivative ∂Cy/∂α is evalu-
ated from the curve fits of Cy(α) described previously. The
uncertainty in ∂Cy/∂α is computed using a Monte Carlo
method with 5× 103 random samples. For the smooth
cylinder, ∂Cy/∂α|α=0 < 0 and thus this geometry is sta-
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ble with respect to galloping over 1,100 ≤ Red ≤ 10,000.
As Red decreases from 10,000 to 5,000, ∂Cy/∂α|α=0 be-
comes increasingly negative, however a dramatic increase
occurs when Red decreases to 2,500. Although the value
of ∂Cy/∂α|α=0 remains negative, it becomes substantially
closer to the instability threshold for Red ≤ 2,500 com-
pared with higher Reynolds number. The addition of the
εo/d = 5% topology generally causes ∂Cy/∂α|α=0 to in-
crease relative to the smooth case, indicating that this topol-
ogy is generally destabilizing. This is particularly true at
Red = 1,100, where ∂Cy/∂α|α=0 > 0 and the geometry
is unstable. For Red ≥ 5000, ∂Cy/∂α|α=0 increases rel-
ative to the smooth case but does not become positive.
Increasing εo/d to 10% generally has the same effect as
εo/d = 5%, except the larger amplitude makes the magni-
tude of ∂Cy/∂α|α=0 smaller. As a result, the increase in
εo/d becomes destabilizing for Red ≥ 5,000, since it causes
the derivative to move closer to the instability threshold. On
the other hand, for Red = 1,100, while the larger amplitude
also makes the cylinder unstable, the decrease in the deriva-
tive magnitude makes the cylinder less prone to vibration
since a larger critical reduced velocity would be require for
the onset of oscillation. For all cases, the qualitatively dif-
ferent behavior between Red = 1,100 and Red ≥ 5,000 is
indicative of a transitional Red range that seems to encom-
pass Red = 2,500. This may explain the lack of systematic
trends for measurements at this Reynolds number. This in-
cludes the large change in ∂Cy/∂α|α=0 at Red = 2,500 and
a behavior of the derivative with εo/d that is different from
the low (Red = 1,100) and high (Red ≥ 5,000) Reynolds
number cases.
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Figure 5: Effect of the surface height amplitude on the
galloping criterion at α = 0◦ with comparison to the
smooth geometry.

The previous discussion regarding galloping stabil-
ity was based on the value of ∂Cy/∂α|α=0, where
∂Cy/∂α|α=0 > 0 indicates a body that would gallop from
rest. In this case, a small disturbance causes the initial mo-
tion of the body and the oscillations of the body increase in
time until non-linearities in the structure and/or fluid force
drive the system towards a stable limit cycle of oscilla-
tions (Barrero-Gil et al., 2009). However, for cases where
∂Cy/∂α|α=0 < 0, the body may still be prone to galloping
in a hard oscillation mode. This can occur if there are ranges

of α away from 0◦ where ∂Cy/∂α > 0. Unlike “soft” oscil-
lators, a hard oscillator requires a large initial disturbance
to reach the basin of attraction of the limit cycle (Novak,
1972). The results in Figure 4 demonstrate for all three ge-
ometries, regions of ∂Cy/∂α > 0 exist for Reynolds num-
bers where ∂Cy/∂α|α=0 < 0. The hard galloping behavior
of each geometry is considered by examining ∂Cy/∂α as a
function of α , as shown in Figure 6. Results are shown at
Red = 5,000 and 10,000, since each geometry is stable to
galloping from rest over this Reynolds numbers range (Fig-
ure 5).
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Figure 6: Normal-force coefficient derivative variation
with angle-of-attack for the smooth and the topology
models.

At Red = 5,000, ∂Cy/∂α for the smooth geometry is
initially negative but becomes positive for α between ap-
proximately 3◦ and 7◦. The angle where ∂Cy/∂α first be-
comes positive (i.e., 3◦ for the smooth case) will be referred
to as the galloping angle. The presence of the surface topol-
ogy with εo/d = 5% results in a reduction in the galloping
angle to approximately 2◦. Therefore, the εo/d = 5% topol-
ogy at Red = 5,000 makes the geometry more susceptible to
hard galloping, as a smaller galloping angle corresponds to
a smaller initial disturbance being capable to initiate oscil-
lation. Increasing εo/d to 10% results in an increase in the
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galloping angle relative to the smooth case, and also much
smaller positive ∂Cy/∂α magnitude. It is interesting to note
that for α > 8◦, surface topology has no effect on the slope
of Cy as all three cases essentially collapse.

The effect of topology on ∂Cy/∂α at Red = 10,000
is shown in Figure 6b. Unlike at Red = 5,000, the addi-
tion of surface topology does not make the body more sus-
ceptible to hard galloping relative to the smooth case. The
εo/d = 5% topology has essentially the same galloping an-
gle of ∼ 3◦ as the smooth case. The large amplitude topol-
ogy, εo/d = 10%, at Red = 10,000 is an interesting case
as it is completely stable over the investigated α range and
is not susceptible to hard galloping. This is contrary to the
destabilizing effect that increasing εo/d to 10% has on soft
galloping. Although not shown for brevity, this was also the
case for the εo/d = 10% geometry at Red = 7,500. A con-
sistent trend over 5,000≤ Red ≤ 10,000 is that the addition
of surface topology leads to a decrease in the peak positive
value of ∂Cy/∂α relative to the smooth case (or the elim-
ination of positive ∂Cy/∂α altogether). For a given elasti-
cally mounted body, a decrease in the magnitude of positive
∂Cy/∂α is associated with a decrease in the amplitude of
oscillation and an increase in the critical reduced velocity
required for galloping to occur (Blevins, 2001). The results
at Red = 10,000 also show that unlike Red = 5,000, there
are two ranges of α where the slope of Cy is positive for
εo/d < 10%. This is associated with the double peak be-
havior observed in Figure 4 for certain Red .

CONCLUSIONS
The effect of surface topology amplitude on the gal-

loping instability of a rectangular cylinder with side ratio
c/d = 2.5 and corner radius r/d = 0.5 was investigated ex-
perimentally for Reynolds numbers Red = 1,100 – 10,000.
The topological parameter of interest was the surface height
amplitude, εo/d; models were tested with two values of
εo/d, 5% and 10%.

The smooth geometry showed a lift curve with positive
slope near angle-of-attack α = 0◦ over the entire Red range,
while the added topology led to a shift from positive to neg-
ative slope with decreasing Red . The topology was found to
increase drag at α = 0◦ relative to the smooth case, with the
increase being constant at Red = 1,100 and monotonically
increasing with εo/d at Red = 10,000.

The smooth geometry was found to be stable over
the investigated Reynolds number range, as indicated by
∂Cy/∂α|α=0 < 0 (where Cy is the force coefficient in the
galloping direction). In general, the results showed that
the addition of surface topology had a destabilizing effect
and caused an increase in ∂Cy/∂α|α=0. This increase lead
to instability (∂Cy/∂α|α=0 > 0) for each topology geom-
etry at Red = 1,100. In addition to the stability criterion
for galloping from rest, ∂Cy/∂α|α=0, the hard galloping
behavior was also investigated. With the exception of the
εo/d = 10% geometry at high Reynolds number, all of the
geometries showed susceptibility to hard galloping in cases
where they were stable to galloping from a small distur-

bance. Increasing εo/d was found to decrease or eliminate
the susceptibility to hard galloping. This feature along with
a smaller magnitude of ∂Cy/∂α|α=0 renders the 10% more
preferable to the 5% topology from the perspective of sus-
ceptibility to galloping, irrespective of the initiating distur-
bance level.
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