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ABSTRACT
In this paper, the prediction capabilities of recurrent

neural networks are assessed in the low-order model of
near-wall turbulence by Moehlis et al. (New J. Phys. 6, 56,
2004). Our results show that it is possible to obtain excel-
lent predictions of the turbulence statistics and the dynamic
behavior of the flow with properly trained long short-term
memory (LSTM) networks, leading to relative errors in the
mean and the fluctuations below 1%. We also observe that
using a loss function based only on the instantaneous pre-
dictions of the flow may not lead to the best predictions in
terms of turbulence statistics, and it is necessary to define
a stopping criterion based on the computed statistics. Fur-
thermore, more sophisticated loss functions, including not
only the instantaneous predictions but also the averaged be-
havior of the flow, may lead to much faster neural network
training.

INTRODUCTION
The use of neural networks (NNs) in the context of

turbulent flows has recently started to receive increasing
attention, as discussed for instance by Duraisamy et al.
(2019). Neural networks are computational frameworks
used to learn certain tasks from examples, and they are
a tool widely used in machine learning. Their success
in a number of areas, mainly related to pattern recogni-
tion, can be attributed to the increase in available compu-
tational power (mainly through graphics processing units,
i.e. GPUs) and it explains the increasing interest in their
use for turbulence (Kutz, 2017). Several studies have ex-
plored the possibility of using neural networks to develop

more accurate Reynolds-averaged Navier–Stokes (RANS)
models (Wu et al., 2018), while other studies aim at devel-
oping subgrid-scale (SGS) models for large-eddy simula-
tions (LESs) of turbulent flows (Lapeyre et al., 2019). Other
relevant applications include the development of robust in-
flow conditions for high-Reynolds-number turbulence sim-
ulations (Fukami et al., 2018) and the identification of co-
herent structures in the flow (Jiménez, 2018).

The aims of the present work are to assess whether
it is possible to use NNs to predict the temporal dynam-
ics of turbulent shear flows, and to test various strategies to
improve such predictions. In order to easily obtain suffi-
cient data for training and validation, we considered a low-
order representation of near-wall turbulence, described by
the model proposed by Moehlis et al. (2004). The mean
profile, streamwise vortices, the streaks and their insta-
bilities as well as their coupling are represented by nine
spatial modes u j(x). The spatial coordinates are denoted
by x and t represents time. The instantaneous velocity
fields can be obtained by superimposing the nine modes as:
ũ(x, t)=∑

9
j=1 a j(t)u j(x), where Galerkin projection can be

used to obtain a system of nine ordinary differential equa-
tions (ODEs) for the nine mode amplitudes a j(t). A model
Reyonlds number Re can be defined in terms of the chan-
nel full height 2h and the laminar velocity U0 at a distance
of h/2 from the top wall. Here we consider Re = 400 and
employ U0 and h as velocity and length scales, respectively.
The ODE model was used to produce over 10,000 time se-
ries of the nine amplitudes, each with a time span of 4,000
time units, for training and validation. The domain size
is Lx = 4π , Ly = 2 and Lz = 2π , where x, y and z are the
streamwise, wall-normal and spanwise coordinates, and we
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consider only time series that are turbulent over the whole
time span. In the next sections we will discuss the feasi-
bility of using various types of neural network to predict
the temporal dynamics of this simplified turbulent flow. All
the results discussed in this study were obtained using the
machine learning software framework developed by Google
Research called TensorFlow (Abadi et al., 2016).

PREDICTIONS WITH RECURRENT NEURAL
NETWORKS

The simplest type of neural network is the so-called
multilayer perceptron (MLP) (Rumelhart et al., 1985),
which consists of two or more layers of nodes (also de-
noted by the term neurons), where each node is connected to
the ones in the preceding and succeeding layers. Although
MLPs are frequently used in practice, their major limitation
is that they are designed for point prediction as opposed to
time-series prediction, which might require a context-aware
method. Nevertheless, MLPs provide a solid baseline in
machine-learning applications and thereby help verifying
the need for a more sophisticated network architecture. We
first assessed the accuracy of MLP predictions of the nine-
equation model by Moehlis et al. (2004), where the time
evolution of the nine coefficients was predicted with several
different architectures. The turbulence statistics were ob-
tained by averaging over the periodic directions (i.e. x and
z) and in time over 500 complete time series, which was suf-
ficient to ensure statistical convergence in this case (Srini-
vasan et al., 2019). In order to quantify the accuracy of
the predictions, we consider the relative error between the
model and the MLP prediction (denoted by the subindices
‘mod’ and ‘pred’, respectively) for the mean flow as:

Eu =
1

2 max(umod)

∫ 1

−1

∣∣umod−upred
∣∣dy, (1)

where the normalization with the maximum of u is intro-
duced to avoid spurious error estimates close to the center-
line where the velocity is 0. This error is defined analo-
gously for the streamwise velocity fluctuations u2. A num-
ber of MLP architectures were investigated (see additional
details in the work by Srinivasan et al., 2019), and the best
predictions were obtained when considering l = 5, n = 90
and p = 500, which denote respectively the number of hid-
den layers, the number of neurons per layer and the number
of previous a j(t) values used to obtain a prediction. With
this architecture, the errors in the mean and fluctuations are
Eu = 3.21% and Eu2 = 18.61% respectively, indicating that
although acceptable predictions of the mean flow can be ob-
tained, the errors in the fluctuations are high. Furthermore,
the size of the input is d = 9p = 4,500 (i.e. 9 coefficients
over the past 500 time steps are used to predict the next 9
coefficients), which is quite large. Since the MLP performs
point predictions, it does not exploit the sequential nature
of the data, and it is therefore important to assess the fea-
sibility of using other types of networks, i.e. the so-called
recurrent neural networks (RNNs), which can benefit from
the information contained by the temporal dynamics in the
data.

In its simplest form, an RNN is a neural network con-
taining a single hidden layer with a feedback loop. As op-
posed to MLPs, each node of the RNN layer has an in-
ternal state vector that is combined with the input vector

Algorithm 1: Compute the output sequence of
an LSTM network.

Input: Sequence χχχ1,χχχ2, . . .χχχ p
Output: Sequence ζζζ 1,ζζζ 2, . . .ζζζ p
set h0← 0
set C0← 0
for t← 1 to p do

ft ← σ(W f [χχχ t ,ζζζ t−1]+b f )
it ← σ(Wi[χχχ t ,ζζζ t−1]+bi)

C̃t ← tanh(W f [χχχ t ,ζζζ t−1]+b f )

Ct ← ft ⊗Ct−1 + it ⊗ C̃t
ot ← σ(Wo[χχχ t ,ζζζ t−1]+bo)
ζζζ t ← ot ⊗ tanh(Ct−1)

to compute the output. The output of the hidden layer in
the previous time instance is fed back into the hidden layer
along with the current input. This allows information to
persist, making the network capable of learning sequential
dependencies. In practice, this simple recurrent network
is not effective to learn long-term dependencies, hence a
more sophisticated model is required, such the long short-
term memory (LSTM) network proposed by Hochreiter &
Schmidhuber (1997), or the gated recurrent unit (GRU) net-
work developed by Cho et al. (2014). Both architectures
use a gating mechanism to actively control the dynamics of
the recurrent connections. Each unit in the LSTM layer per-
forms four operations through three different gates. The for-
get gate uses the output in the previous time instance ζζζ t−1
and the current input χχχt to determine which part of the cell
state Ct−1 should be retained in the current evaluation. The
input gate uses the same quantities to determine which val-
ues of the cell state should be updated and it also computes
the candidate values for the update. Finally the output gate
uses the newly-updated cell state to compute the output. Al-
gorithm 1 illustrates how the output is computed and how
the cell state is updated, where ⊗ indicates the Hadamard
product and σ denotes the logistic sigmoid function. A
schematic representation of a multi-layer LSTM is shown
in Figure 1. The model is defined by a set of parameters
P which comprise the weight matrices W and the biases b.
During training, the values of the parameters are optimized
to minimize a certain loss function.

We initially analyzed the prediction capabilities of
LSTM networks for this turbulent shear flow wall model
by considering a network with a single layer of 90 LSTM
units. We trained it with three different datasets, consisting
respectively of 100, 1,000, and 10,000 time series spanning
4,000 time units each (Srinivasan et al., 2019). We consid-
ered a validation loss defined as the sum over p time steps
of the squared error in the prediction of the instantaneous
coefficients a j, and observed that better predictions of the
turbulence statistics could be obtained when larger datasets
were employed for training. Note that we considered 20%
of the training data as a validation set, which is then used
to test the evolution of the validation loss on data which has
not been seen by the network during training. Using 10,000
time series for training, we obtained excellent predictions of
the turbulence statistics, with Eu = 0.45% and Eu2 = 2.49%.
This was obtained with p = 10, i.e. with an input size 50
times smaller than that used with MLP. In Figure 2 we show
a comparison of the turbulence statistics obtained from the
nine-equation model and this LSTM network, including the
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Figure 1. “Unrolled” representation of a multi-layer LSTM, where Pi is the set of parameters that characterize the LSTM unit
of the i-th layer. Note that Pi is shared among all the p time steps considered for the prediction. Here χχχ is an input based on
the nine-equation model, whereas χ̂̂χ̂χ is predicted by the neural network and T is the final time step of the prediction.

mean flow, the fluctuations and the Reynolds shear-stress
profile uv. The agreement of all the statistics with the refer-
ence data is excellent, and even higher-order moments ex-
hibit low relative errors, i.e. 1.01% and 2.57% for skewness
and flatness, respectively (Srinivasan et al., 2019). These
results highlight the excellent predicting capabilities of the
LSTM network, given that sufficient training data is pro-
vided, due to the ability of the network to exploit the se-
quential nature of the data.

The quality of the predictions was further assessed in
terms of the dynamic behavior of the system, first through
the Poincaré map defined as the intersection of the flow state
with the hyperplane a2 = 0 on the a1−a3 space (subjected
to da2/dt < 0). This map essentially shows the correla-
tion between the amplitudes of the first and third modes,
i.e. the modes representing the laminar profile and the
streamwise vortices in the nine-equation model. In Fig-
ure 3 (top) we show the probability density function (pdf)
of the Poincaré maps constructed from the 500 time series
obtained from the LSTM prediction and the reference nine-
equation model. In this figure it can be observed that the
LSTM network captures the correlation between the am-
plitudes of both modes, which indicates that their interac-
tion is adequately represented by the NN. We also stud-
ied the separation among trajectories in the reference model
and in the LSTM predcition by means of Lyapunov expo-
nents. For two time series 1 and 2, we define the sepa-
ration of these trajectories as the Euclidean norm in nine-
dimensional space:

|δA(t)|=
[

9

∑
i=1

(
ai,1(t)−ai,2(t)

)2
]1/2

, (2)

and denote the separation at t = t0 as |δA0|. The initial
divergence of both trajectories can be assumed to behave
as: |δA(t ′)|= exp(λ t ′) |δA0|, where λ is the so-called Lya-
punov exponent and t ′ = t− t0. We introduced a perturba-
tion with norm |δA0| = 10−6 (which approximately corre-
sponds to the accuracy of the current LSTM architecture) at
t0 = 500, where all the coefficients are perturbed, and ana-
lyzed its divergence with respect to the unperturbed trajec-
tory. In Figure 3 (bottom) we show the evolution of |δA(t)|
with time for the reference and the LSTM prediction, after
ensemble averaging 10 time series. Both rates of divergence

are very similar, with almost identical estimations of the
Lyapunov exponents λ : 0.0264 for the LSTM and 0.0296
for the nine-equation model. Also note that after around
approximately 1,000 time units of divergence, both curves
saturate. This result provides additional evidence support-
ing the excellent predictions of the dynamic behavior of the
original system when using the present LSTM architecture.

TOWARDS IMPROVING NEURAL NETWORK
PREDICTIONS

We have shown the potential of a particular type of
RNN, the LSTM, to accurately predict the temporal dy-
namics and statistics of a low-dimensional representation
of near-wall turbulence. Next we explore different strate-
gies to potentially improve the accuracy and efficiency of
RNN predictions.

Validation loss and training stopping crite-
rion

As discussed above, the amplitudes of the modes in
the model by Moehlis et al. (2004) exhibit fluctuations that
are compatible with a chaotic turbulent state. Given the
high sensitivity of the model to very small variations in the
mode amplitudes, a loss function based on short-time hori-
zon predictions, namely one time step ahead, is required
to obtain satisfactory predictions. On the other hand the
trained model needs to correctly reproduce not only the in-
stantaneous behavior but also the statistical features of the
original shear flow model. The approach used in the work
by Srinivasan et al. (2019) involves a loss function based
only on the error in the instantaneous prediction. Neural
networks having at least one hidden layer have been shown
to be universal approximators (Cybenko, 1989), hence they
are in principle able to represent any real function. A perfect
reproduction of the temporal behavior of the model would
also provide correct mean and turbulent fluctuations at no
added cost, however there is no guarantee that such a model
can be learned and, even in that case, the model would the-
oretically be available after an infinitely long training. To
verify to which extent the loss function based on instanta-
neous prediction represents an effective solution, different
neural network configurations were tested to assess the cor-
relation between the achieved validation loss and the error
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Figure 2. Turbulence statistics corresponding to (left) streamwise mean profile, (middle) streamwise velocity fluctuations and
(right) Reynolds shear stress. Orange is used for the reference nine-equation model and blue for the predictions using an LSTM
network with 1 layer and 90 neurons, trained with 10,000 datasets.
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Figure 3. (Top) Probability density function of the
Poincaré maps, where the intersection with the a2 = 0 plane
(with da2/dt < 0) is shown. (Bottom) Ensemble-averaged
divergence of instantaneous time series after a perturbation
with |δA0|= 10−6 is introduced at t0 = 500, showing initial
exponential growth and the value of the Lyapunov exponent
(dashed lines added to illustrate the obtained slope). In both
panels orange and blue denote reference model and LSTM
prediction, respectively.

in the statistics of the flow. In Table 1 we summarize the
various LSTM architectures under study, where we vary the
number of layers, the number of time series used for train-
ing and the time step between samples. Let us consider the
case LSTM2–1–100, consisting of 2 layers, with 90 units
per layer, trained with 100 time series and a timestep of 1.
Figure 4 shows the validation loss and the relative errors
Eu and Eu2 for this network, as functions of the number of
epochs trained (i.e. the number of complete passes through
all the samples contained in the training set). In the initial

stage of the training, starting from the randomized initial-
ization of the weights and biases, the reduction of the error
in the instantaneous behavior and in the statistical quanti-
ties show a similar trend. However, this figure also shows
that lower validation loss values do not always lead to a
better approximation of the turbulence statistics. In fact,
as the training progresses, the optimization algorithm con-
tinues to improve the short-term predictions, whereas be-
yond around 240 epochs the error in the statistics does not
follow a descending trend anymore. The observed behav-
ior is explained by the fact that the loss function does not
contain any term explicitly related to the statistics which
could guide the optimization algorithm towards parameter
sets with a better representation of the statistical quanti-
ties. Note that since the initialization of the parameters of
the network is random, the performance in the prediction
of mean and fluctuation may vary when the same model
is trained multiple times. The achievable accuracy and the
epoch at which this value will be reached are unknown a
priori.

These results indicate that different strategies can be
implemented in order to reduce the error on the statistics of
the flow. One possible approach consists in including a new
term in the loss function accounting for the error in the tur-
bulence statistics. In this case the relative importance of the
two terms needs to be adjusted, as prioritizing the accuracy
of the statistics may lead to a model that learns only the av-
erage behavior of the system. Alternatively, it is possible to
use the fact that the time horizon of the predictions influ-
ences which features of the problem are learnt by the neural
network, as highlighted by Chiappa et al. (2017). In that
work it was shown how improvements in the short-term ac-
curacy (i.e. in the prediction of the instantaneous behavior)
come at the expense of the accuracy of global dynamics.
Using the results of the network to make predictions several
time steps ahead would encourage the network to learn the
long-term behavior of the system and thus its global dynam-
ics. As stated by Chiappa et al. (2017), this approach has the
added advantage of training the model in a way that is simi-
lar to its actual utilization. In fact, during the evaluation and
usage, our networks rely only on the previous predictions
after the first p time steps. Note however that taking into
account the error in the current prediction based on previous
predicted values typically results in a much more complex
loss function. Both approaches require additional hyper-
parameters that need to be optimized in order to obtain a
satisfactory performance. In this study we aim at keeping
a simple loss function, and we use the error in the statistics
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Figure 4. Evolution of the validation loss and the statis-
tical errors as the training of the LSTM2–1–100 network
progresses.

as criterion to halt the training when a minimum is reached
for this value. Note that the error can vary significantly from
one epoch to the other, hence it is advisable to consider mul-
tiple epochs to identify the general trend of the error curves.
Doing so, we can achieve excellent predictions of the turbu-
lence statistics while using a simple loss function based on
the instantaneous predictions of the coefficients. As shown
in Table 1, the improvement over the models reported in our
previous work (Srinivasan et al., 2019) is particularly evi-
dent for the models trained on the small dataset, yielding an
accuracy in the statistics comparable with that of the net-
works trained with bigger data sets. It is also important to
note that the improved scheduled reduction of the learning
rate employed for the results in Table 1 allowed to obtain
much lower validation losses than in our previous work, us-
ing a similar training time. When reaching such low values
of the loss function, the trade-off between the instantaneous
and the average performance is more apparent.

Effect of the time step
The sequences provided to the neural network for train-

ing are evenly spaced in time, however the choice of the
proper time step between data points ∆t depends on the
problem at hand. The time step acts as a low-pass filter
on the data, preventing the model from learning higher-
frequency dynamics. On the other hand, for a fixed amount
of samples, a larger ∆t allows to train the model using more
time series. As shown in Table 1, we considered the LSTM
network with 1 layer and 90 neurons, and trained it using the
same time series with ∆t = 10, 1 and 0.1 time units. Note
that the input dimension is maintained constant by setting
p = 10. The number of time series and epochs for training
were chosen so that it could be possible to compare mod-
els that have been trained on a similar number of samples.
The results in Table 1 show that increasing the time step
from 1 to 10 leads to a validation loss three orders of mag-
nitude larger, a fact that indicates the difficulty in learning
the model dynamics when such a coarse sampling in time is
considered. On the other hand, reducing the time step from
1 to 0.1 does not yield any additional improvement in the
predictions. The loss function has a similar trend and the
final values are comparable when using time steps equal to
1 and 0.1, showing that most of the characteristics of the

system have been properly captured. It may be possible to
find a ∆t that further reduces the error based on the temporal
characteristics of the signal.

Use of gated recurrent units (GRUs)
The performance of an alternative type of RNN, the

so-called gated recurrent unit (GRU), is also studied here.
The structure of GRU layers is simpler than in the LSTM,
consisting of a single update gate instead of the forget and
input gates. Also, the cell state and the output are merged
into a single vector. The network architecture considered
here has 1 layer of 90 nodes and it is similar in every aspect
to the corresponding LSTM case, except for the node defi-
nition. The number of parameters that need to be optimized
is smaller than in the LSTM, and therefore GRUs should
require less computational resources to be trained. In our
experience however, when training the considered architec-
ture on CPU, the LSTM network was approximately as fast
as its GRU counterpart. Despite the fact that it is possible
to obtain similar validation losses with GRUs and LSTM
networks, the resulting errors in the statistics are signifi-
cantly higher in the former. In particular, when training with
only 100 time series the predicted results exhibited a non-
physical behavior. Although the results in Table 2 suggest
that the predictions may improve when using much larger
training databases, the LSTM networks provide much more
accurate predictions and they are therefore preferred for the
present application.

SUMMARY AND CONCLUSIONS
In this study we assessed the feasibility of using RNNs

to predict the temporal dynamics of the low-order model of
near-wall turbulence by Moehlis et al. (2004). Our previous
results (Srinivasan et al., 2019) indicated that it is possi-
ble to obtain excellent predictions of the turbulence statis-
tics using LSTM networks, and to reproduce the temporal
dynamics of the system characterized through e.g. Poincaré
maps and Lyapunov exponents. Here we show that, even us-
ing relatively small LSTM networks trained with low num-
bers of time series, e.g. the LSTM1–1–100 case, it is pos-
sible to obtain very low errors in the mean and the fluctu-
ations, i.e. Eu = 0.26% and Eu2 = 0.59%. It is important
to highlight that a loss function based only on the instanta-
neous predictions of the mode amplitudes may not lead to
the best predictions in terms of turbulence statistics, and it
is necessary to define a stopping criterion based on the val-
ues of Eu and Eu2 . Our results also suggest that using more
sophisticated loss functions, including not only the instan-
taneous predictions but also the averaged behavior of the
flow, may lead to much faster neural network training. It is
however remarkable that using a simple loss function based
on instantaneous values we also obtained very good pre-
dictions of Poincaré maps and Lyapunov exponents. We
also assessed the impact of the time step, where the best
network performance was obtained with ∆t = 1. Addition-
ally, we compared the performance of LSTM networks and
GRUs, and the former clearly provided much better predic-
tions. The methods described in this work can be extended
for their use in generation of inflow conditions for turbu-
lence simulations and the development of off-wall boundary
conditions for high-Re simulations.
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Table 1. Summary of LSTM cases and their performance using different numbers of training data sets and time resolutions.
Note that we employed 90 units and p = 10 in all the cases. The statistical errors for LSTM1–10–1000 are not reported because
the predictions exhibited a clearly non-physical behavior during all stages of training.

Case N. Layers ∆t Training data sets Eu [%] Eu2 [%] Validation Loss

LSTM1–1–100 1 1 100 0.26 0.59 6.68×10−9

LSTM1–01–100 1 0.1 100 1.81 6.03 9.13×10−10

LSTM1–10–1000 1 10 1,000 – – 3.65×10−5

LSTM1–1–1000 1 1 1,000 0.57 0.58 8.36×10−9

LSTM1–01–1000 1 0.1 1,000 1.18 1.39 6.46×10−9

LSTM1–1–10000 1 1 10,000 0.31 0.48 9.85×10−9

LSTM2–1–100 2 1 100 0.80 1.13 8.39×10−9

LSTM2–1–1000 2 1 1,000 0.54 0.62 8.84×10−9

LSTM2–1–10000 2 1 1,000 0.69 1.37 2.72×10−9

Table 2. Summary of GRU cases and their performance using different numbers of training data sets. Note that in all the
cases 1 layer of 90 units was employed, with p = 10. The statistical errors for GRU100 are not reported because the predictions
exhibited a clearly non-physical behavior during all stages of training.

Case Training data sets Eu [%] Eu2 [%] Validation Loss

GRU100 100 – – 1.33×10−8

GRU1000 1,000 2.30 12.49 6.13×10−9

GRU10000 10,000 3.05 2.61 5.61×10−9
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