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Université Paris-Saclay,
94235 Cachan, France

antoine.briard@hotmail.fr

ABSTRACT
Strong time-periodic accelerations applied tangentially

to an infinite horizontal plane layer between two miscible
fluids trigger a parametric instability leading to remarkable
saw-tooth patterns known as frozen waves. The resulting
turbulent mixing zones grow in time and then saturate when
the resonance conditions of internal gravity waves are no
longer fulfilled. The Floquet analysis of a model equation
and direct numerical simulations reveal that the final mix-
ing zone sizes evolve as the square of the forcing ampli-
tude. This suggests that an horizontal forcing mixes more
efficiently fluids than a vertical one at large forcing acceler-
ations.

INTRODUCTION
It is known since Faraday (1831) that a parametric in-

stability can result from a time-periodic acceleration ap-
plied to the interface between fluids of different densities
(see also Miles et al. (1990)). In this work, we propose a
theoretical and numerical analysis for the special configura-
tion of miscible fluids forced by an oscillating acceleration
tangent to the interface. When dealing with miscible fluids,
the parametric instability, if strong enough, eventually leads
to a turbulent mixing zone. However, turbulence cannot be
sustained and irremediably decays as the mean density gra-
dient decreases. The gravity waves propagating inside the
layer and responsible for turbulence production have pro-
gressively lower frequencies and can no longer be paramet-
rically excited by the forcing. Therefore, the system is ex-
pected to converge toward a final saturated mixing layer.
This has been indeed observed experimentally by Zouesh-
tiagh et al. (2009) for the vertical forcing case. Gréa &
EboAdou (2018) have also evidenced the phenomenon with
numerous simulations and have further proposed a predic-
tion criterion for the final mixing layer width using Floquet
analysis of gravity wave equations.

Our goal is to conduct a similar analysis for the hori-
zontal forcing case. Still, the problem becomes more com-
plex to study due to the presence of a mean shear render-
ing the turbulence no longer axisymmetric. The horizon-
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Figure 1. Visualization of turbulent frozen wave patterns
inside a mixing zone driven by time-periodic horizontal ac-
celeration extracted from a 10243 DNS with F = 40. Vol-
ume rendering colors indicate the concentration of heavy
fluid C inside the mixing layer. Pure fluids are transparent.

tal configuration has been addressed particularly by Gapo-
nenko et al. (2015), who in the context of miscible flu-
ids have observed striking elongated structures refereed as
frozen waves first observed by Wolf (1969, 2018). Simula-
tions show that these structures even exist in the turbulence
regime but remains unexplained (See Fig. 1). Accordingly,
we try to elucidate how such structures can appear as well
as predicting the turbulent mixing layer dynamics.
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THEORY
Basic equations

We start by defining the components Gi of the acceler-
ation vector expressed by:

Gi(t) = G0 (−δi3 +F cosωtδi1) (1)

with G0 the mean acceleration value oriented along the 3
vertical direction, F the acceleration ratio between the mean
and oscillating part along the horizontal 1 and the forcing
frequency ω (see also Fig. 1). In addition, this problem is
also controlled by the Atwood number A , expressing the
contrast of density between both fluids.

Miscible fluids of small density difference can be well
described by the incompressible Navier-Stokes equations
for the velocity Ui(x, t) and the concentration of heavier
fluid C(x, t)∈ [0 1] using classically the Boussinesq approx-
imation:

∂tC+U j∂ jC = D∂ j jC, (2)

∂tUi +U j∂ jUi =−∂iP+2A GiC+ν∂ j jUi, (3)

∂ jU j = 0. (4)

The flow can be assumed statistically homogeneous in the
horizontal direction. It is then convenient to introduce the
horizontal mean and use the Reynolds decomposition to
separate mean (noted with ∗ symbol) and fluctuating quan-
tities (thereafter noted with small letter). Within the mix-
ing layer, the mean concentration gradient can be assumed
constant and related to the size L of the mixing layer as
∂3C =−1/L. Time periodic horizontal forcing induces also
a mean shear S = ∂3U1 which is the destabilizing force for
turbulent quantities. In the limit of strong forcing parame-
ter F , the shear is equal to S = N2F sinωt

ω
, introducing the

buoyancy frequency N = (2A G0/L)1/2.
Similarly to Gréa (2013), we write the rapid acceler-

ation equations for the vertical velocity component u3(k, t)
and concentration perturbation c(k, t) inside the layer. Here,
the mixing zone is assumed sufficiently developed such that
the wave vector k has a modulus k� 1/L and we can as-
sume quasi-homogeneity. This gives the system of equa-
tions:

ċ = 1
L u3, (5)

u̇3−2 k1k3
k2 S u3 =−2A G0 (P33−F cosωtP13)c, (6)

k̇3 =−Sk1, (7)

introducing the projector Pi j = δi j−kik j/k2. Note the pres-
ence of a distortion equation for the vertical component of
the wave vector due to the shear.

Stability analysis
The system of equations (5-6) can be put on the form

(having replaced t→ ωt):

c̈+2XY sin tċ+X(1+Y cos t)c = 0 (8)

X(θ ,φ) = sin2
θ

N2

ω2 (9)

Y (θ ,φ) = cotθ cosφF (10)

where θ and φ are the spherical angles characterizing the
wave vector direction. Here, the distortion is neglected cor-
responding to the limit of large F . This equation constitutes

Figure 2. Stability diagram for Eq. 8 as a function of pa-
rameter X and Y obtained from Floquet analysis and show-
ing the unstable harmonic regions. Starting from an initial
condition, the final layer width is determined such that all
the modes are outside the unstable regions as L grows. The
green areas delimited by the red curves correspond to the
modes which are excited inside the layer.

our primary model to study the stability of a layer driven by
time-periodic horizontal forcing.

The solutions for Eq. (8) can be determined by a
Floquet analysis (see figure 2) as in Kumar & Tucker-
man (1994). As a first result, it is shown that the re-
sponse of the perturbation is harmonic contrary to the verti-
cal forcing configurations where sub-harmonic modes pre-
vail. Indeed, Eq. (8) can be rigorously turned into a Math-
ieu equation through the classical change of variable y =
cexp [−XY cos t]. In the new system, the resulting driving
term oscillates at twice the frequency of the forcing. This
evidences that shear inhibits sub-harmonic modes through
the ċ term of Eq. (8).

The final size of the mixing layer is derived such that
for all θ and φ , Eq. (8) is stable. As L grows (N2 decreases)
fewer modes are indeed excited and one can show that the
latest ones correspond to θ = 0 justifying to neglect dis-
tortion effects in the theory. This result is only valid for
F >

√
2 and leads to a criterion for the final value of the

mixing layer:

Lsat =
A G0

ω2 F2 (11)

SIMULATIONS
We perform direct numerical simulations (DNS)

(around 30) using a classical pseudo-spectral method in
order to investigate parametric instabilities developing in
miscible fluids forced by horizontal accelerations (see Bri-
ard et al. (2019) for details). A large range of parameters
F ∈ [0.5 40] is explored in order to assess the theory. The
frequencies ω , Atwood numbers A and mean accelerations
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Figure 3. Time evolution of the mixing zone size L evalu-
ated from the mean concentration profiles from 10243 DNS
at F = 8, 16, 20. Dashed line corresponds to the theoretical
prediction of the saturation.

G0 are chosen such that the predicted final size of the layer
corresponds to half the size of the computational domain.

In Figure 3, typical time evolutions of the mixing zone
are presented for various forcing parameters at F = 8, 16,
20 evaluated from DNS with

L = 6
∫ +∞

−∞

C(1−C)dx3. (12)

The layer monotonically grows until reaching saturation as
expected. No oscillations on the mixing zone size are ob-
served contrary to the classical vertical problem, although
turbulent fluctuations exhibit a harmonic response. At large
F , frozen wave patterns emerge at large scales which can be
understood as an equilibrium between buoyancy forces and
the horizontal shear.

The predictions of the final size of the layer are remark-
ably well verified at large parameter F as shown in Figure 4.
In addition, the threshold F =

√
2 is also confirmed bring-

ing strong support to the theory. However at smaller F the
main assumptions used to derive the model equation are no
longer valid (distorsion neglected). This is why the predic-
tions are no longer expected to be valid.

CONCLUSION
A new purely inviscid theory consisting in Floquet

analysis of gravity waves equations is proposed in order
to study the dynamics of turbulent layers driven by time-
periodic horizontal forcing. This allows for the prediction
of mixing layers final size as long as for a criterion on the
acceleration parameter F for the appearance of frozen wave
structures. These findings have been successfully compared
to numerous direct numerical simulations. This suggests
that horizontal forcing is more efficient at producing mix-
ing than vertical one, for which the final mixing layer size
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Figure 4. Values of final mixing zones size Lsat as a func-
tion of the acceleration ratio F and derived from DNS (sym-
bols). Theoretical predictions are shown in plain lines.

evolves only linearly with the forcing amplitude as shown
in Gréa & EboAdou (2018).
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