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ABSTRACT
We propose a preconditioner that significantly acceler-

ates the rate of convergence of the Multiple Shooting Shad-
owing (MSS) method (Blonigan and Wang, 2018) used to
compute derivatives of time-averaged objectives to system
parameter(s) for chaotic systems. Obtaining such deriva-
tives (also known as sensitivities) accurately and quickly, is
useful for example in optimal control and uncertainty quan-
tification applications. MSS currently suffers from slow
convergence. We propose a block diagonal preconditioner,
which is based on a partial singular value decomposition of
the MSS constraint matrix. Two chaotic systems are con-
sidered; the Lorenz system and the 1D Kuramoto Sivashin-
sky equation. The preconditioner is matrix-free and can be
applied using existing time-steppers for the forward and ad-
joint equations.

INTRODUCTION
A dynamical system can be written as a set of ordinary

differential equations, du/dt = f(u,s), where u is a vector of
state variables (length N), f is a vector of non-linear equa-
tions, and s is one (or more) system or control parameters.
We define a time-averaged objective as

J̄ = lim
T→∞

1
T

∫ T

0
J(u(t,s),s)dt (1)

and seek the sensitivity dJ̄/ds. The sensitivity can be used
to compute a search direction to iteratively find the opti-
mal controls that minimise or maximise J̄. For aeronautical
engineering applications, J̄ could be, for example, the av-
eraged drag force on an airfoil, and s, a set of geometrical
or actuation controls. Finite difference methods for com-
puting dJ̄/ds are usually not used, since the computational
cost grows with the number of controls. The conventional
method for computing dJ̄/ds requires integration of the lin-

earised tangent evolution equation

dv
dt

=
∂ f
∂u

v+
∂ f
∂ s

(2)

where v(t,s) = du(t,s)/ds and ∂ f/∂u is a Jacobian matrix. The
chain rule is applied to give the sensitivity

dJ̄
ds

=
1
T

∫ T

0

(
∂J(u(t,s),s)

∂u
v(t,s)+

∂J
∂ s

)
dt (3)

The linearised solution v(t) for chaotic systems grows with
O(eλmaxt), where λmax is the largest system Lyapunov expo-
nent, rendering dJ̄/ds meaningless for long T . ‘Chaos’ here
refers to systems that are sensitive to the control s, meaning
that small perturbations to s lead to exponentially diverging
trajectories. For chaotic systems, (2) is ‘ill-conditioned’,
and a number of methods have been proposed to counter
this issue (Wang et al., 2014; Lasagna, 2017; Lea et al.,
2002)

Least Squares Shadowing (LSS) (Wang et al., 2014)
was proposed to compute bounded solutions v(t) for chaotic
systems, and hence to compute accurate sensitivities. LSS
requires the solution of a large linear matrix system, mak-
ing it prohibitively expensive to be applied to high DOF
systems. Its variant, Multiple Shooting Shadowing (MSS)
(Blonigan and Wang, 2018) is a promising alternative, but
suffers from slow convergence. In this paper, we propose
a preconditioner to pave the way forward for MSS to be
applied to high DOF systems. We show that convergence
can be made almost independent of the number of DOF and
trajectory lengths.

SHADOWING METHODS
Least Squares Shadowing (LSS) finds a ‘shadow’ tra-

jectory satisfying du′/dt = f(u′,s+ δ s), that stays close in
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Figure 1: A sketch illustrating the segmenting approach of
MSS. The constraint equations are propagated forward in
time in all K segments, such that v(t+i ) = v(t−i ) is satisfied
for i = 1,2, ...,K−1.

phase space to a reference trajectory ure f (satisfying du/dt =
f(u,s)) at all time instances. It achieves this by relaxing the
initial condition for the shadowing trajectory. This regu-
larises the problem leading to meaningful sensitivities dJ̄/ds

for chaotic systems that are sensitive to small changes in s.
The existence of the shadowing trajectory is guaranteed for
hyperbolic systems from the Shadowing Lemma (Pilyugin,
1999). The linear form of LSS can be written as follows

Minimise
v,η

1
T

∫ T

0
‖v‖2 +α

2
η

2 dt,

subject to
dv
dt

=
∂ f
∂u

v+
∂ f
∂ s

+ηf(ure f ,s)
(4)

where v(t)= d(u′−ure f )/ds, η(t)= d (dτ/dt−1)/ds (time dilatation
term) and α is a penalisation parameter. Solving (4) is too
expensive for systems with a large number of degrees of
freedom.

The recently proposed Multiple Shooting Shadowing
(MSS) method (Blonigan and Wang, 2018) reduces costs by
minimising the Euclidean norm of v(t) at K discreet check-
points in time only (instead of at all time instances as in
LSS). This is illustrated in Figure (1).

By using state transition theory, the MSS optimisation
problem can be written as

Minimise
vi

1
2

K

∑
i=0
‖vi‖2

2 (5a)

subject to vi+1 = Φi+1vi +bi+1 (5b)

where Φi are N ×N state transition matrices, and bi are
zero-state response term vectors. (5b) enforces continu-
ity between segments and satisfies (4b) at any given time
checkpoint i. (5) is equivalent to (4) when α = 0 and as
K → ∞. For more details, refer to (Blonigan and Wang,
2018).

(5) is an under-determined problem that can be written
in matrix form as

Minimize
vi

1
2

K

∑
i=0
‖vi‖2

2 (6a)

subject to Av = b (6b)

where

A=


−Φ1 I

−Φ2 I
. . .

. . .
−ΦK I

 v=


v0
v1
...

vK

 b=


b1
b2
...

bK

 (7)

and A is a NK×N(K + 1) matrix, v and b are vectors
of length N(K+1) and NK respectively, and bi are the zero-
state response terms. An optimality system can be derived
by introducing a set of discrete adjoint variables w, and dif-
ferentiating the resulting Lagrangian, giving

[
−I AT

A 0

][
v
w

]
=

[
0
b

]
(8)

with a Schur complement

Sw =


Φ1ΦT

1 + I −ΦT
2

−Φ2 Φ2ΦT
2 + I −ΦT

3
. . .

. . .
. . .

−ΦK ΦKΦT
K + I




w1
w2
...

wK

= b

(9)
that can be solved for the discreet adjoint variables w. The
solution w can be used to find v and then dJ̄/ds by evaluating
the following integral:

dJ̄
ds

=
1
T

K−1

∑
i=0

∫ ti+1

ti

〈
∂J
∂u

∣∣∣∣
t
,v′
〉

dt+

1
T

K−1

∑
i=0

〈fi+1,v′(ti+1)〉
‖fi+1‖2

2
(J− Ji+1)+

∂ J̄
∂ s

(10)

Matrix S has size NK×NK. Equation (9) can be solved
iteratively in a matrix-free fashion by supplying matrix-
vector products Sw( j) to a Krylov-type solver, such as Con-
jugate Gradient or GMRES. w( j) is a sequence of solver
generated vectors. Products involving Φi require integra-
tion of the homogeneous form of (2), and those involving
ΦT

i require backwards in time integration of the homoge-
neous adjoint form of (2). There is an adjoint version of
(9) for computing simultaneously the sensitivities to multi-
ple control inputs. For more details, refer to (Blonigan and
Wang, 2018).

A BLOCK DIAGONAL PRECONDITIONER
FOR THE MSS SCHUR COMPLEMENT

The convergence rate of iterative Krylov subspace
solvers for symmetric, positive definite matrices (like S) de-
pends on the distribution of the matrix eigenvalues (Saad,
2003). For such systems, the eigenvalues are all positive
and real. If all of them are tightly clustered around a few sin-
gle points away from the origin, then one would expect fast
convergence. On the other hand, widely spread eigenval-
ues without tight clustering can lead to slow convergence.
The objective of a preconditioner is to reduce the spread of
the eigenvalues, and thereby reduce the condition number,
κ(S) = µmax(S)

µmin(S)
, where µmax(S) and µmin(S) are the maxi-

mum and minimum eigenvalues of S, respectively.
An extensive survey of preconditioners for saddle point

problems, such as the MSS KKT system (8), is available
in (Benzi et al., 2005). Preconditioners can be applied to
the 2×2 block system (8) or directly to the Schur comple-
ment system (9). In either case, an easily invertible approx-
imation of S is required. There is an additional restriction,
namely that the preconditioner should be matrix free, i.e. it
should rely on matrix-vector products only (computing and
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storing S is out of the question for long trajectories and large
N).

We consider first deflating the eigenval-
ues greater than unity. There are typically
O(# Positive Lyapunov exponents × K) eigenvalues
greater than one. The singular value decomposition (SVD)
of a given state transition matrix Φi reads

Φi =UiΣiV T
i (11)

where Ui, Σi and Vi are N ×N matrices. The columns of
Ui contain the left singular vectors of Φi, while the right
singular vectors of Φi make up the columns of Vi. Σi is
a diagonal matrix containing the singular values of Φi in
descending order, which we denote by σ(Φi).

We can form an efficient preconditioner (see Shawki
and Papadakis, 2018) by ignoring the off-diagonal identities
of matrix A (7), and denote this matrix by Ã. We can then
compute an approximation to S̃−1 = (ÃÃT )−1

MBD ≈ S̃−1 =


(Φ1ΦT

1 )
−1

(Φ2ΦT
2 )
−1

. . .
(ΦKΦT

K)
−1


(12)

using a partial singular value decomposition (SVD) of the
state transition matrices Φi. A full SVD is not required,
since Φi can be estimated with a small number of singular
modes only (those with large σ ) . This reduces the cost of
computing the SVD. The resulting preconditioner takes the
form

MBD
(q)
(l) = diag(M(q)

(l),1,M
(q)
(l),2, ...,M

(q)
(l),K) (13a)

M(q)
(l),i =UiΣ

−2
i UT

i +(I−UiUT
i ) (13b)

where l is the number of retained singular modes in each
segment, i is the segment number and q is the number of
Lanczos bidiagonalisation iterations. The superscript (q)
and subscript (l) have been removed from Σi and Ui for
clarity. We call (13) the ‘Block Diagonal Preconditioner’
(BDP). The MATLAB function ‘svds’ was used to compute
(13b). The decoupling between segments as a result of ne-
glecting the identities of the matrix A allows for a much
faster and more efficient parallel-in-time evaluation of the
blocks M(q)

(l),i. We use MBD
(q)
(l) as a left preconditioner for

the original system, ı.e. we solve

MBD
(q)
(l) Sw = MBD

(q)
(l) b (14)

The function of MBD
(q)
(l) is to deflate the K× l largest eigen-

values of S and bring their values closer to unity. Regular-
ising the very small µmin is essential for solution accuracy
and convergence speed for non strictly hyperbolic systems.
Using Tikhonov regularisation, we get:

(γI +MBD
(q)
(l) S)w = MBD

(q)
(l) b (15)

where the regularisation parameter γ > 0. The above
form brackets eigenvalues within the narrow range [γ,γ +

Figure 2: Residuals for the original system S (solid lines)
and the regularised BDP system γI + MBD(1)S (dashed
lines) with γ = 0.1. The segment size is ∆T = 1 and ρ = 40
(Lorenz system). Blue: T = 200, red: T = 300, black:
T = 500, green: T = 1000.

µmax(MBD
(q)
(l) S)]. The presence of γ results in discontinu-

ities in v(t). Choosing a small γ improves the conditioning
without affecting much the accuracy of the computed sensi-
tivity. A larger γ however can degrade the accuracy.

RESULTS
Two dynamical systems were considered; the Lorenz

system and the Kuramoto Sivashinsky equation. The
Lorenz system reads

dx
dt

= σ(y−x)
dy
dt

= x(ρ− z)−y
dz
dt

= xy−β z (16)

where σ , ρ and β are system parameters. When (15)
was solved using l = 1 (since there is one positive expo-
nent for the Lorenz system), and γ = 0.1, the convergence
was found to be almost independent on T (see Figure 2).
While κ(S) (and the number of iterations) increases with T ,
κ(γI +MBD

(q)
(l) S) stays almost constant with T , thus keep-

ing convergence independent on T . The clustering effect
of µ(S) is clearly essential for efficient and scalable use of
MSS.

MSS was then applied to the Kuramoto Sivashinsky
equation

∂u
∂ t

=−(u+ c)
∂u
∂x
− ∂ 2u

∂x2 −
∂ 4u
∂x4

x ∈ [0,L]

u(0, t) = u(L, t) = 0

∂u
∂x

∣∣∣∣
x=0

=
∂u
∂x

∣∣∣∣
x=L

= 0

(17)

where L = 128 and N ≥ 127 (# grid points). We first study
the combined effect of the number of preconditioner re-
tained singular modes, l and of γ on the eigenvalue spectrum
the convergence rate. For this, we solve (15) for different l
and using γ = 0.01. We see from Figure (3) that increasing
l up to l = 15 (number of positive Lyapunov exponents) re-
duces µmax by up to at least two orders of magnitude and
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(a) Eigenvalues

(b) Residuals

Figure 3: Eigenvalues and residuals of the original system
S (blue line), and of the BDP system (γI +MBD

(2)
(l) S) for

N = 127, T = 100 and c = 0.8. The preconditioners were
constructed for different l, and a regularisation value γ =
0.01 was used.

leads to faster convergence rates (panel b). Interestingly, a
further increase to l = 25 or l = 30 increases the condition
number and slows down the convergence (Figure 3b). This
indicates that after a certain value of l, adding more sin-
gular modes to the individual preconditioner blocks M(q)

(l),i
starts to provide unreliable information to the approxima-
tion (Φ1ΦT

1 )
−1, and hence to the preconditioner MBD

(q)
(l) .

This value can be closely linked to the number of positive
exponents.

When equation (15) was solved using l = 15, conver-
gence was found to be almost independent on both T and
N (see Figure 4). For T = 500 (Figure 4a), the total cost
(in terms of the number of constraint and adjoint integra-
tions) of constructing MBD

(q)
(l) and solving (15) was reduced

by a factor of 35 (compared to the cost of solving without
preconditioning).

CONCLUSIONS
We proposed a block diagonal preconditioner to accel-

erate the convergence rate for the solution of the linear sys-
tem arising from the application of the Multiple Shooting

(a) Varying T with N = 127

(b) Varying N with T = 100

Figure 4: Residuals for the original system S (solid lines)
and for γI + MBD

(q)
(l) S with γ = 0.09, q = 2 and l = 15

(dashed lines). The segment size is ∆T = 10 for all cases.
In the top figure (a), Blue: T = 100, red: T = 200, black:
T = 500

Shadowing algorithm. The preconditioner is based on the
partial singular value decomposition of the diagonal blocks
of the Schur complement. It was applied to the Lorenz sys-
tem and the Kuramoto Sivashinsky equation.

When the preconditioner was combined with a regular-
isation method, the condition number was significantly sup-
pressed, and the convergence rate was found to be weakly
dependent on the number of degrees of freedom and the
length of the trajectory. The total number of operations was
significantly reduced as a result. The results show that a
faster implementation of MSS for the sensitivity analysis of
higher DOF systems is possible.

The number of singular modes to retain in the partial
SVD, l, is case dependent. A well-chosen value is required
for fast convergence. If the number of positive Lyapunov
exponents is known, it can be used to inform the choice of
l. Strictly speaking however, this is not necessary. A self-
adaptive algorithm is currently being investigated to esti-
mate l that requires no prior knowledge of the number of
positive Lyapunov exponents.

Apart from the value of l mentioned above, the ques-
tion on how to choose an appropriate value of the regular-
isation parameter γ that can provide an adequate balance
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between solution accuracy and rate of convergence is still
open. The application of MSS for the control of the KS
equation is currently being investigated.
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