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ABSTRACT
Neural network based turbulence models are developed

to improve predictions of complex separated flows. The k-ε
turbulent kinetic energy transport equation is modified by
multiplying the production term by a factor predicted by a
neural network. The neural network is trained separately on
Large-Eddy Simulation (LES) data of a three-dimensional
skewed bump and a wall-mounted cube and tested by apply-
ing the model to Reynolds Averaged Navier-Stokes (RANS)
simulations of the same flows. A Gaussian mixture model
is used to predict where the neural network is extrapolat-
ing and the standard RANS model is used in those regions.
The neural network and Gaussian mixture model are cou-
pled directly in the RANS solver so predictions are made
at each iteration. The method improves TKE and mean ve-
locity predictions in the separated flow cases tested while
maintaining an accurate boundary layer profile.

INTRODUCTION
Reynolds Averaged Navier-Stokes (RANS) simula-

tions are not predictive in separated flows, especially when
separation occurs on a smooth surface. The precise loca-
tion of separation is determined by a balance between mean
momentum transport, Reynolds stress gradients, and pres-
sure gradients. If the location of separation on a smoothly
contoured surface changes slightly, the separation bubble
size and downstream flow can change significantly (Cherry
et al., 2008). Furthermore, Reynolds stresses are typically
high in the shear layer immediately after separation, and in-
accurate predictions of those Reynolds stresses impact the
RANS model accuracy in the separation bubble and wake.

The Reynolds stress tensor −u′iu
′
j can be split as:

−
u′iu
′
j

2k
= bi j−

1
3

δi j (1)

where bi j is the dimensionless anisotropy tensor, k is tur-

bulent kinetic energy (TKE), and δi j is the Kronecker delta
function. One interpretation of this decomposition is that
the turbulent kinetic energy represents the magnitude of the
Reynolds stress and the anisotropy tensor represents the di-
rectionality. In a RANS model, both bi j and k must be mod-
eled. In linear eddy viscosity models such as the k− ε or
k−ω models, the anisotropy tensor is represented as:

bi j =
νT

k
Si j (2)

where Si j is the mean strain rate tensor and νT is the turbu-
lent viscosity, which is formed from a combination of other
RANS variables.

RANS models solve auxiliary partial differential equa-
tions in addition to the time-averaged Navier-Stokes equa-
tions. The k− ε model solves two auxiliary equations for
turbulent kinetic energy, k, and turbulent dissipation rate, ε .
Both RANS auxiliary equations represent transport equa-
tions for k or ε , but employ approximate models for some
terms. For example, the RANS TKE transport equation is
based on the exact TKE transport equation, but the produc-
tion, diffusion, and dissipation terms are modeled.

From Equation 1, it is clear that to correctly predict the
Reynolds stress, both the anisotropy tensor and turbulent
kinetic energy must be correctly predicted, so both terms
are potentially sources of error. The assumption that the
anisotropy tensor is linearly related to the strain rate tensor
is inaccurate in complex flows (Slotnick et al., 2014). Fur-
thermore, the use of Equation 2 to model the anisotropy ten-
sor assumes that anisotropy can be represented by the local
flow gradients, implying that the timescale for anisotropy
to adjust to the local flow is short. The modeled auxiliary
equations are sources of error for k and νT . The present
work focuses solely on error in k due to the modeled auxil-
iary equations.

Typically, RANS models are evaluated by their accu-
racy at predicting the mean velocity field, and accurate pre-
diction of TKE is of secondary importance. Our philosophy
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is that a robust, physics-based model must accurately repre-
sent TKE to accurately predict the mean velocity field for a
wide range of flow topologies. If both TKE and anisotropy
are accurate, it is conjectured that the mean velocities will
also be accurate. The only way a RANS simulation could
accurately predict the velocity field but have incorrect TKE
is if errors in TKE cancel errors in anisotropy. A model
tuned to provide such cancellation in one class of flows is
unlikely to work well in other cases. Furthermore, meth-
ods that improve the anisotropy tensor may aim to make the
anisotropy tensor physically accurate rather than optimizing
the velocity field (Ling et al. (2016b), Wang et al. (2017)).
For those methods, it is important that the RANS TKE also
be physical to make the overall Reynolds stress accurate.

In recent years, researchers have begun using machine
learning (ML) to improve RANS predictions. Tracey et
al. (2015) found that neural networks could be used to
learn terms in a turbulence model, which suggested that ML
could be used to improve RANS models. Ling et al. (2016b)
developed the Tensor-Basis Neural Network (TBNN) that
preserves Galilean invariance for predicting the anisotropy
tensor and found that RANS simulations with TBNN pre-
dictions for the anisotropy tensor were more accurate than
standard linear or quadratic eddy viscosity models (Ling et
al., 2016b, 2016a). Duraisamy et al. (2015) modified the
Spallart-Allmaras eddy viscosity equation by multiplying
the production term by a factor β . They used inverse mod-
eling to identify the optimal β as a function of space and
machine learning to predict β from local mean flow fea-
tures. In Parish & Duraisamy (2016) and Duraisamy et al.
(2017) their method was extended to modifying the auxil-
iary equations in the k−ω model by multiplying either pro-
duction term by a new factor. Xiao and colleagues used ran-
dom forests to model discrepancies between a RANS and
DNS as functions of local mean flow features (Wang et al.
(2017), Wu et al. (2018)). In their method as well as in Ling
et al. (2016b), an initial standard RANS is run and the so-
lution of that RANS is used to predict discrepancies using
ML. A second RANS is run using the predicted discrep-
ancies to improve the Reynolds stress. Predicting model
discrepancies is dependent on the accuracy of the standard
RANS simulation and will not work well if the standard
RANS simulation is highly inaccurate. With the method of
Xiao and colleagues, both the TKE and anisotropy are im-
proved. The TKE is improved by predicting the logarithm
of the ratio of the true TKE to the RANS TKE, then using
the predicted discrepancy to improve the TKE of the second
RANS.

The equation modification in this work is inspired by
Parish & Duraisamy (2016), but our methodology is differ-
ent. Ling et al. (2016b) has already developed a method
to improve predictions of the anisotropy tensor, and Du-
raisamy et al. (2015) developed a method to improve pre-
dictions of turbulent kinetic energy, but the two methods
cannot be combined consistently. Any optimization that
minimizes error in the velocity or turbulent kinetic energy
is dependent on errors in the anisotropy tensor. Once the
TBNN is used to correct the anisotropy tensor, the method
of Duraisamy et al. (2015) is no longer optimal.

Here we develop an alternative method of identifying
β that is independent from anisotropy tensor errors, so that
the method can eventually be combined with a TBNN to
improve both components of the Reynolds stress. We mod-
ify the k-ε turbulent kinetic energy transport equation using
neural networks trained on Large Eddy Simulation (LES)

data to model β from local flow features. The neural net-
work is coupled in the RANS solver to update predictions
during the simulation.

The training data features (inputs) can be described as
data from a distribution in feature space. The neural net-
work is well trained where the training data has high den-
sity in feature space, but is not well trained where the den-
sity of training data is low. In low-density regions, neural
networks can extrapolate and give highly inaccurate results.
When a neural network is used to improve RANS simula-
tions, the flow configurations tested are different from the
flow configurations from which training data is extracted.
The distributions of training and test data may be different,
allowing extrapolation to occur. Here we use a Gaussian
mixture model to approximate the training data feature dis-
tribution so that potential neural network extrapolation can
be identified at run time. The ML RANS then reverts back
to a standard RANS model rather than using extrapolated
values.

APPROACH
Neural Network

In an accurate RANS model, the RANS equations
should give an accurate representation of TKE when the
mean velocity is correct. In that case, solving the RANS
equations with mean velocity and pressure from a high-
fidelity simulation should give an accurate TKE. However,
current RANS models give inaccurate predictions of TKE,
especially in complex flows. This work adjusts the RANS
TKE equation to predict more accurate TKE with the longer
term goal of improving mean flow prediction.

We modify the production term of the realizable k-ε
turbulent kinetic energy transport equation (Eqn. 3) by mul-
tiplying it by a new factor β , which is a function of local
mean flow features.

∂

∂x j
(ρku j) =

∂

∂x j

[(
µ +

µT

σk

)
∂k
∂x j

]
+β µT Si jSi j−ρε

(3)
This modification is similar to the method of Duraisamy
et al. (2017), but the method of determining β is different.
The procedure of identifying β is as follows: The RANS ε

equation is calculated with the high-fidelity simulation ve-
locity, pressure, and TKE held fixed. Using the calculated
distribution of ε , all the variables in the RANS TKE equa-
tion are known, but the equation is not balanced. β is deter-
mined as a function of space such that Eqn. 3 is balanced.
If those values of β were used to adjust the TKE equation
for that particular configuration, the RANS TKE equation
would be balanced when the RANS predicts the LES TKE
and mean velocity.

β is determined as a function of space, but for a general
model it should be parameterized as a function of local flow
variables. Here, a neural network is used to convert β to
a function of local flow invariants. Specifically, the neural
network inputs are the invariants of the mean strain and ro-
tation rate tensors S and R, the wall distance Reynolds num-
ber, and the turbulent viscosity ratio. These input features
are listed in Table 1. The strain and rotation rate tensors
in Table 1 are nondimensionalized by k/ε , as suggested by
Pope (1975). The neural network loss function used during
training is the square of the imbalance in Equation 3.
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Table 1. Input features to the neural network and Gaussian
mixture model.

Tr(S2) Tr(R2) Tr(S3) Tr(R2S)

Tr(R2S2) yk0.5

ν

νT
ν

The neural network has 10 hidden layers, each with 15
nodes. The neural network size is chosen such that no over-
fitting occurs but the neural network is sufficiently large to
create complex functional relations. Each neuron not in the
last layer has a rectified linear unit (ReLU) activation func-
tion. The neural network is trained to convergence, with a
learning rate of 10−5 at the end. Values of β are limited to
the range between 0 and 4 before updating the RANS TKE
equation.

When applied to a new flow, the neural network pre-
dicts β as a function of the local features computed by the
RANS. For consistency, the neural network is coupled in
the RANS solver to make updated predictions each itera-
tion. This method was designed as a ‘turbulence model’
in the sense that the output (β ) is a function only of local
flow variables. The method is independent of errors in an
initial RANS, unlike discrepancy-based methods. We use
the RANS solver Fluent, developed by ANSYS, with the
realizable k− ε model. The neural network is coded into
user-defined functions that calculate β each timestep. Each
iteration takes approximately twice as long with the neural
network. However, it is not necessary to update the neu-
ral network predictions each timestep. The method works
equally well when the neural network predictions are up-
dated every fifth iteration step, in which case the slowdown
is approximately 20%.

Gaussian Mixture
Neural networks can extrapolate when used on data un-

like the training data. When used to improve RANS simu-
lations in engineering, it is difficult to prevent extrapolation
from occuring. As a product is being designed, the flow
configurations are different from the training data. Ideally,
the ML algorithms are trained on a wide variety of flows
so that the ML predictions are accurate in any engineering
flow. Currently, no large database of high-fidelity simula-
tions exists with which to train the algorithms. Furthermore,
identifying when the ML algorithm is trained on enough
different flows is still an open research topic and beyond
the scope of the present work. It is unclear if it is even pos-
sible to create a sufficiently large database of flows to make
a fully general data-driven RANS model.

Wu et al. (2017) used the Mahalanobis distance and
kernel density estimation to assess if their ML algorithm
was extrapolating based on the training data inputs. Here
we use a Gaussian mixture model to estimate if the neural
network is overfitting, in which case our model will revert
back to the baseline RANS (set β to unity). The Gaussian
mixture model is a method of approximating a density func-
tion from data with a sum of weighted Gaussian functions
(Dempster et al., 1977). The Gaussian mixture model is
trained on the same input features as the neural network.
During testing, the Gaussian mixture model returns a score
for each point. If the score is lower than that of 98% of the
training data, the ML model reverts back to the standard k-ε
model for that point.

Figure 1. Schematic of wall-mounted bump flow.

FLOW CONFIGURATIONS
The ML models are trained using data from LES’s

of two different separated flows over a skewed three-
dimensional wall-mounted bump with Reynolds number of
16,000 based on bump height from Ching & Eaton (2019).
The bump has cosine cross-sections from the side and ellip-
tical cross-sections from the top with 4/3 axis ratio, shown
schematically in Figure 1. The incoming boundary layer
thickness is half the bump height. LES’s are run with the
bump at angles of 10◦ and 50◦ with respect to the flow, pro-
ducing a highly 3D separated flow. The LES’s are wall re-
solved on the bottom surface and were carefully validated
against experimental mean velocity data from Ching et al.
(2018a) and Ching et al. (2018b).

The skewed bump flow is highly sensitive to the precise
geometry. Vortex dynamics of the wake are very different
at the two bump angles studied, which leads to significantly
different mean fields and TKE in the wake. The bump flow
is therefore a very challenging case for RANS models to
predict. It is found that the realizable k−ε model converges
to a steady solution for the 10◦ bump angles, but does not
converge for the 50◦ bump. We therefore use the 50◦ bump
only for training.

The trained models are tested on the bump flows as
well as flow over a wall-mounted cube and a flat-plate
boundary layer. Rossi et al. (2010) ran a Direct Numeri-
cal Simulation (DNS) of a wall-mounted cube at Reynolds
number of 5000 based on cube height. The cube has a small
vertical jet on the top surface with diameter 1/12 of the cube
height and uniform velocity 0.19 times the freestream ve-
locity. The boundary layer thickness is 1/5 the cube height.
The cube DNS has a uniform velocity inlet with no turbu-
lence and the boundary layer Reynolds number based on
distance from the inlet is 30,000. At this low Reynolds
number, the boundary layer never transitions to turbulence.
Due to the absence of a turbulent boundary layer, the cube
case is not used for training models tested on the bump. To
exclude laminar regions from the training data, only points
with turbulence intensity greater than 3% and wall distance
Reynolds number greater than 5 are included in the train-
ing data for all the flow configurations. The ML model is
applied only to regions that satisfy the same conditions.

In addition to the separated flow cases, the ML model
is tested for a flat plate boundary layer. Because the ML
model is developed for 3D flows, the RANS is run in a 3D
domain with symmetry side walls, resulting in a 2D bound-
ary layer. The mesh has 100,000 elements and is a single
element wide in the spanwise direction. The bottom wall is
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Figure 2. a) TKE contours on the centerplane of the 10◦

bump LES. b) Baseline RANS. c) ML RANS trained on 10◦

bump. d) ML RANS trained on 50◦ bump

resolved with a y+ of 0.3 at the outlet. Boundary layer pro-
files are compared to the experimental data of Degraff and
Eaton (2000) at Reθ = 2900.

RESULTS
The ML algorithms are trained and tested on different

flows, since when used in engineering the method would be
applied to test flows different from the training flows. In
practice, it is desirable that the ML algorithms are trained
on flows similar to the test flows for best accuracy, but it is
possible that a test flow contains features not found in the
training data. In the present work, ML algorithms trained
on one bump angle are applied to the other bump angle and
to the cube flow to examine both scenarios.

Because this method aims to increase accuracy of the
RANS TKE equation, but does not change anisotropy er-
rors, the mean velocity fields are expected to have large er-
ror, particularly in areas that anisotropy is highly important.
The main performance metric of this method should be im-
provement of RANS TKE. It should be noted that incorrect
anisotropy leads to mean velocity errors and velocity gradi-
ents are inputs to both the TKE equation and the ML correc-
tion. Therefore, RANS TKE predictions are still coupled to
incorrect velocity predictions, so the TKE is still expected
to have error even after the ML correction.

Figure 2a shows TKE on the centerplane of the 10◦

bump from the LES, and Figure 2b shows TKE from the
standard RANS. The RANS severely underpredicts TKE in
the wake, particularly near the walls. Figure 2c shows the
results when ML models trained on the identical 10◦ bump
are used to modify the RANS TKE equation. Training and
testing on the same flow is not a good metric of the model’s
performance, but it is informative of the best possible im-
provement from this model. The ML model improves TKE
predictions significantly, especially near the bottom surface
and far downstream. Figure 2d shows an ML RANS trained
on the 50◦ bump and applied to the 10◦ bump. The TKE
is significantly improved over the baseline RANS (Figure
2b), although not as much as the model trained on the 10◦

Figure 3. a) Streamwise mean velocity contours on the
centerplane of the 10◦ bump LES. b) Baseline RANS. c)
ML RANS trained on 10◦ bump. d) ML RANS trained on
50◦ bump

bump (Figure 2c). The differences between models trained
on different bump angles is due to geometric sensitivity of
the bump.

Figure 3 shows contours of streamwise velocity for the
same cases. The LES (Figure 3a) has stronger backflow in
the separation bubble and the wake decays faster than the
standard RANS model (Figure 3b). Both ML RANS im-
prove the mean velocity in the far wake, but do not improve
the reattachment location or strength of reversed flow in the
separation bubble.

It is important to note that no method is used to mod-
ify the anisotropy tensor. It is well known that in separated
flows, the RANS model for anisotropy given in Equation 2
is inaccurate. Since TKE and anisotropy are coupled, errors
in anisotropy affect the velocity field and thereby the TKE.
It is therefore not surprising that the ML RANS do not im-
prove the velocity field in the separation bubble, since there
is a high degree of anisotropy in that region. Downstream
of the separation bubble anisotropy is far less important and
the converged ML RANS models improve the velocity field.
It is promising that the far wake results can be improved
solely by modifying the RANS TKE equation. While this
method is designed to eventually be combined with a TBNN
to improve the anisotropy tensor, adjusting the anisotropy
tensor to improve overall predictions is beyond the scope of
this work.

Figure 4 shows contours of β predicted by the neural
network after the RANS simulation has converged for the
two ML RANS simulations. Points where turbulence inten-
sity is less than 3% or the Gaussian mixture model density
function is lower than the 2% percentile of the training data
are blanked. The ML model is only trained on points with
turbulence intensity greater than 3%, so for consistency it is
applied only to the same points. In regions where Figure 4
is blanked, the ML RANS reverts back to a standard RANS,
which is equivalent to setting β to unity. Note that the val-
ues of β in Figure 4 vary widely, indicating large errors in
the standard model. The predicted value of β is generally
high near the bottom surface and in the shear layer above
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Figure 4. a) Contours of β in the 10◦ bump using the ML
model trained on the 10◦ bump. Points where the Gaussian
mixture model predicts potential extrapolation are blanked.
b) ML model trained on the 50◦ bump.

Figure 5. a) Contours of TKE on centerplane of cube
DNS. b) Baseline RANS. c) ML RANS trained on cube.
d) ML RANS trained on 50◦ bump. e) ML RANS trained
on 10◦ bump.

the bump. This indicates that the standard RANS model
production is too low or the dissipation is too high in those
regions.

The machine learning algorithms were next used to
predict the wall-mounted cube flow. Figure 5 shows TKE
contours from each simulation. The baseline RANS (Figure
5b) severely underpredicts TKE in comparison to the DNS
(Figure 5a). An ML model trained on the cube in Figure
5c significantly improves the wake. The ML models trained

Figure 6. a) Centerplane contours of β from ML RANS
trained on 50◦ bump. b) ML RANS trained on 10◦ bump.

Figure 7. Streamwise velocity profiles at Reθ = 2900
from Degraaff and Eaton (2000), standard RANS, and ML
RANS models trained on 10◦ bump and 50◦ bump.

on the 50◦ bump (Figure 5d) and the 10◦ bump (Figure 5e)
give very different results, although both models are more
accurate than the baseline RANS.

Figure 6 shows contours of β in the cube flow when
trained separately on the 50◦ and 10◦ bumps. Not only are
the contours of β significantly different, the blanking due to
the Gaussian mixture model is different in the near wake. A
large region of the near wake is blanked in the ML RANS
trained on the 50◦ bump (Figure 6a) but not the 10◦ bump
(Figure 6b). This suggests that the flow in the wake of the
cube is more similar to the 10◦ bump than the 50◦ bump,
so the 10◦ bump forms a better training case for the cube
flow. It is likely that the TKE for the ML RANS trained on
the 50◦ bump is low partially because the ML model reverts
back to the standard RANS model in that region.

The original realizable k− ε model was tuned to give
a reasonably accurate boundary layer mean velocity pro-
file. It is highly important that when the TKE equation is
improved with machine learning, the modification does not
make the boundary layer profile inaccurate. To test this, the
ML models trained on the bumps are applied to the flat-
plate boundary layer RANS. Figure 7 shows the streamwise
velocity profiles at Reθ = 2900. The profiles are compared
to experimental data from Degraaff and Eaton (2000) and
show reasonably accurate velocity profiles.

Figure 8 shows TKE profiles for the same cases. Due to
the absence of spanwise velocity fluctuations in Degraaff’s
data, we assume spanwise fluctuations are equal to the aver-
age of streamwise and wall-normal fluctuations when plot-
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Figure 8. TKE profiles at Reθ = 2900 from Degraaff and
Eaton (2000), standard RANS, and ML RANS models
trained on 10◦ bump and 50◦ bump.

ting the experimental TKE. Both the standard RANS and
ML RANS simulations underpredict TKE in the boundary
layer, but the ML RANS simulations marginally improve
the TKE profiles.

CONCLUSIONS
A neural network is used to modify the turbulent ki-

netic energy transport equation in the k− ε RANS model
to improve predictions of turbulent kinetic energy. The
method is designed to be independent of errors in the RANS
anisotropy model so that future work can combine this
method with a Tensor Basis Neural Network (TBNN) (Ling
et al., 2016b). The ML RANS models are trained and tested
on separated flows over a three-dimensional, wall-mounted
bump and a wall-mounted cube. Because the training and
test flows are different, neural networks trained on one flow
may extrapolate when applied to a different flow. A Gaus-
sian mixture model predicts where the neural network ex-
trapolates and reverts the ML model back to the standard
RANS model in those regions. Both the neural network and
Gaussian mixture model are coupled in the RANS solver
to make predictions each iteration so the converged ML
RANS uses converged variables to make predictions. The
ML models show significant improvement to the velocity
and turbulent kinetic energy predictions when applied to
both the bump and a wall-mounted cube. Tests show that
the model maintains accurate boundary layer profiles.

It is important to note that as a standalone method, the
modifications of Parish & Duraisamy (2016) are preferred
to the present work. However, only this method can be com-
bined with a TBNN to improve both TKE and anisotropy
predictions.
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