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ABSTRACT
Machine-learned super-resolution is performed to re-

construct the high-resolution flow (HR) field from low-
resolution (LR) fluid flow data. As preliminary tests, we
use two-dimensional cylinder and NACA0012 airfoil wake
flow fields and observe good agreement with reference HR
data. Next, we apply two machine-learned architectures
based on the convolutional neural network (CNN) for two-
dimensional decaying isotropic turbulence. The HR data
sets are obtained from direct numerical simulation (DNS)
and LR data sets are generated by max and average pool-
ing operations. In this work, we present the hybrid Down-
sampled Skip-Connection Multi-Scale (DSC/MS) model,
which can reconstruct the flow field accurately from coarse
input flow field data. Towards the end of the paper, we dis-
cuss the possibility of a machine-learned model for super-
resolution in experimental and computational fluid dynam-
ics.

INTRODUCTION
In recent years, the application of machine learning

to fluid dynamics has shown success in turbulence model-
ing (Ling et al., 2016), reduced order modeling (San and
Maulik, 2018), and turbulent inflow generation (Fukami et
al., 2018a). In addition, these studies have shown the power
of machine learning in extracting key features from tremen-
dously big data generated from the high-dimensional com-
plex flow systems (Kutz, 2016). In the present study, we
use this strength of machine learning for reconstructing the
high resolution flow field from the coarse flow data, known
as ’super-resolution.’

To date, estimation and reconstruction of turbulent flow
fields have been tackled experimentally and numerically.
Chevalier et al. (2006) attempted to predict the character-
istics of the main channel flow from the wall information
using Kalman filter and extended-Kalman filter. Linear
stochastic estimation is also applied to estimate the flow
field in channel flow (Suzuki and Hasegawa, 2017) and

boundary layer (Marusic et al., 2010). Although these ap-
proaches show the applicability for turbulent flow systems,
there remains challenges caused by strong nonlinearity and
chaotic nature of turbulence.

The demand of data reconstruction is seen not only in
fluid dynamics but also in computer science. In particu-
lar, example-based super resolution which can make a high-
resolution signal from low-resolution signal, has been rec-
ognized as a strong method in image tasks (Salvador. 2017).
Moreover, machine-learned super-resolution has emerged
for image reconstruction and showed remarkable ability in
recent years (Dong et al., 2016). With those recent advance-
ments, we consider to apply the image-based concept for
super-resolution analysis of turbulent flows.

Here, we propose a machine-learning based super-
resolution analysis to reconstruct highly resolved turbu-
lent flow fields using LR data. First, we consider two-
dimensional cylinder and NACA0012 airfoil wake flows as
preliminary study. Next, the convolutional neural network
(CNN)-based architectures are applied to two-dimensional
decaying isotropic turbulence. At the end of paper, we
briefly discuss the possibility of machine-learned super-
resolution analysis to experimental and computational fluid
dynamics.

MACHINE LEARNING
In machine learning (ML), the nonlinear regression

function F are defined between the input data x and desired
output data y such that y=F (x;w) with w being the weight
of the machine-learned model. In this work, we prepare the
LR/HR data sets as x and y, respectively. In other words,
the objective of the learning process in the current problem
is to seek the optimized weight w for obtaining desired out-
put y such that w = argminw||y−F (x;w)||22, where we use
the L2 norm to optimize w.

In present study, convolutional neural network (CNN)-
based architectures are used to form F (LeCun et al., 1998).
CNN is one of the most widely used neural networks in the

1



11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11)
Southampton, UK, July 30 to August 2, 2019

Figure 1. Schematic of the hybrid downsampled skip-connection multi-scale (DSC/MS) model.

Figure 2. Super-resolution reconstruction of laminar cylinder wake at ReD = 100. (a) The color contour of vorticity field ω .
(b) Probability density function of vorticity field.

machine-learned super-resolution analysis of image tasks
(Romano et al., 2017). In CNN, we consider the feature
map called filter as the weight w to extract the key feature
between input data set and desired output data set. In addi-
tion, we propose a new network architecture for improving
the reconstruction of image-based super resolution method
for complex flows.

The CNN-based hybrid architecture shown in figure
1 is constructed by combining the downsampled skip-
connection (DSC) model and multi-scale (MS) model. In
DSC model, firstly P×Q pixel input data is compressed to
(P/8)× (Q/8) pixels and entered to the machine learning
model as shown in the green part of figure 1. The compres-
sion of the input data is known as an effective method for
increasing the robustness against movement/rotation (Le et
al., 2010). Next, we apply the skip-connection method (red
arrows in figure 1) to avoid the overfitting which is often
observed in deep CNN models. The DSC model tries to en-
hance the ability of the model against the large-scale struc-
ture of flow data by repeating the compression and skip-
connection. We also combine the MS model proposed by
Du et al. (2018) to predict the small-scale structures as illus-
trated by the yellow part of figure 1. According to their re-
search, the use of various sizes of the feature map enhances
the capability to catch in detail of image super-resolution. In
this paper, we also use 5×5, 9×9 and 13×13 filters follow-
ing their work. At last, the outputs of DSC and MS model
are merged, constructing the high-resolution flow field from
the low-resolution data.

EXAMPLE 1: TWO-DIMENSIONAL CYLINDER
FLOW

At first, let us demonstrate the machine-learned super-
resolution analysis on the two-dimensional cylinder flow.
The training data set is obtained from a two-dimensional
direct numerical simulation (DNS) at ReD = 100 (Taira and
Colonius, 2007; Colonius and Taira, 2008). The governing
equations are the incompressible Navier-Stokes equations,

∇ ·u = 0, (1)
∂u
∂ t

=−u ·∇u−∇p+
1

ReD
∇

2u, (2)

where u, p and ReD are the non-dimensionalized velocity
vector, pressure and Reynolds number, respectively. The
size of computational domain, the number of grid points
and the range of time-steps are (x/D, y/D) = [−0.7,15]×
[−5,5], (Nx, Ny) = (192, 112) and ∆t = 2.50× 10−3. As
the input and output attributes, we choice the vorticity field
ω . In the present study, we adopt max and average pooling
operations for obtaining the low-resolution data ((P/R)×
(Q/S) pixels). These operations are widely used in image
processing. The max pooling is used to enhance the range
of color and brightness. With the average pooling, we can
extract the average value in over an arbitrary area.

In the first preliminary study of a cylinder wake, the
max pooling operation with R = S = 8 (medium resolution)
and R = S = 16 (low resolution) are used. Note that we also
use the average pooling and R = S = 32 (super-low reso-
lution) for turbulent flows in super-resolution analysis, as
discussed later. In all trials in our paper, we use 70 % of the
data set for training and the remaining 30 % for validation.
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Figure 3. Super-resolution reconstruction of flow over a NACA0012 with a Gurney flap at Rec = 1000. (a) The color contour
of vorticity field ω . (b) Probability density function of the vorticity field.

To avoid that the ML model from lacking the generality for
adopting only training data sets (i.e., overfitting), the early
stopping criteria (Prechelt, 1998) is applied.

The procedure of machine-learned super-resolution
analysis of the laminar cylinder wake is summarized in
figure 2. Using our methodology, the vorticity field can
be reconstructed from very coarse data with middle and
low resolutions, as shown in figure 2(a). We also show
the L2 norm error, from low-resolution data ε = ||xHR −
F (x)||2/||xHR||2, below the color contours. The accuracy
of the reconstructed flow field is lower than the middle res-
olution data because of the fidelity of coarse input data. We
also confirm similar tendency in probability density func-
tion of vorticity field B(ω) shown in figure 2(b). From
these observations, we verify the effectiveness of machine-
learned super-resolution analysis for laminar flow.

EXAMPLE 2: TWO-DIMENSIONAL NACA0012
AIRFOIL WITH A GURNEY FLAP

In this section, we tackle a more complicated prob-
lem than the cylinder wake flow. The two-dimensional flow
over a NACA0012 airfoil with a Gurney flap is considered
(Gopalakrishnan Meena et al., 2018). The training data
set is obtained by two-dimensional direct numerical simula-
tion at Rec = 1000. The size of computational domain, the
number of grid points and the size of time step are (x/c,
y/c) = [−0.5,7]× [−2.5,2.5], (Nx, Ny) = (360, 240) and
∆t = 1.00× 10−3, respectively. We also use the vorticity
field ω as input and output attributes. With the Gurney
flap attached to the airfoil, we can observe various types
wakes depending on the angles of attack α and the Gurney-
flap height h/c. In what follows, we focus on cases with
h/c = 0.1 and α = 3◦,12◦ and 20◦ to examine three char-
acteristic wake regimes, as shown in figure 3. As the sub-
sampled method, we use the max pooling with R = S = 16
(low resolution).

The super-resolution analysis for NACA0012 airfoil is
shown in figure 3. Reconstructed vorticity fields are reason-
able agreement with reference DNS data. In the same way
with cylinder wake, we provide the L2 norm error rate ε be-
low the color contour in figure 3(a). It can be seen that the

error norm increases with the angles of attack α . This trend
corresponds to the increasing unsteadiness in the wakes.
Here, we note that this L2 norm error rate is strict mea-
surement without regard to similarity in translation or ro-
tation. It means that error even if the L2 norm appears high,
ML based technique may still exhibit good agreement. In
fact, the flow field can be reproduced and show reasonable
agreement with reference data by machine-learned super-
resolution technique, as shown in figure 3. For the example
of airfoil wake with large unsteadiness, we also observe the
capability of image based super-resolution analysis to re-
construct the flow from very coarse data.

EXAMPLE 3: TWO-DIMENSIONAL DECAYING
ISOTROPIC TURBULENCE

To demonstrate machine-learned super-resolution
analysis on turbulent flows, we consider the two-
dimensional decaying isotropic turbulence. The flow field
is obtained from a bi-periodic Fourier spectral incompress-
ible two-dimensional direct numerical simulation (Taira et
al. 2016). The reference DNS flow field is governed by
two-dimensional vorticity transport equation

∂ω

∂ t
+u ·∇ω =

1
Re

∇
2
ω, (3)

where u = (u,v) and ω are the velocity and vorticity vari-
ables. The size of computational domain and the number
of grid points are (Lx, Ly) = (1, 1) and (Nx, Ny) = (128,
128), respectively. The Reynolds number Re is defined as
Re ≡ u∗l∗/ν , where u∗ is the characteristic velocity based
on the square root of the spatially averaged initial kinetic
energy, l∗ is the initial integral length, and ν is the kine-
matic viscosity. In our study, the 2D turbulent flows are
computed with the initial Reynolds number Re(t0) = 74.6
and ∆t = 1.950× 10−4. The max and average pooling op-
erations are utilized with R = S = 8 (medium resolution),
R = S = 16 (low resolution) and R = S = 32 (super-low res-
olution) to prepare the low-resolution data set. Here, we use
the velocity component u as the input and output attributes.
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Figure 4. (a) The color contour of velocity field u from max and average pooled data., (b) Kinetic energy spectrum of medium
and low resolution data. Dashed and dotted lines are kcutoff and kmax.

The reconstructed turbulent flow fields from the coarse
input data are summarized in figure 4(a). We compare 3
reconstruction methods: the bicubic interpolation, convo-
lutional neural network and hybrid DSC/MS model. The
bicubic interpolation is known as one of the traditional
super-resolution techiniques, based on the filter operation
(Keys, 1981). The L2 error norms are indicated underneath
the color contours.

With the simple bicubic interpolation, the recon-
structed flow fields from the max and average pooled
medium resolution data show reasonable agreement with
reference DNS data. However, the accuracy of reconstruc-
tion by the bicubic interpolation decreases with the fidelity
of input coarse data, as shown in figure 4(a). It can be
seen that the bicubic interpolation simply smoothes the flow
field. In particular, we can observe this tendency in super-
low resolution results.

As the first trial using machine-learned super-
resolution for turbulent flows, we use a 3-layer convolu-
tional neural network. Based on the max pooled data, the
L2 error norms are in general lower with the machine learn-
ing techniques, compared to the results from the bicubic in-
terpolation. However, the returned reconstructed flow fields
from low and super-low resolution data are pixelized. Fur-
thermore, the CNN reconstructions does not show an ad-
vantage against simple bicubic interpolation, as shown in
figure 4(a). Thus, we consider an improved network archi-
tecture for taking the multi-scale of turbulent flows account
into machine-learned super-resolution analysis.

The hybrid DSC/MS model is adopted to enhance the
results of machine-learned super-resolution analysis. In
all cases, the L2 error norms are lowered with the hybrid
DSC/MS model. In the low-resolution (R = S = 8) data
sets of both pooling methods, the flow fields are recon-
structed compared to the bicubic interpolation and CNN.
Moreover, we observe further advantage with the hybrid
DSC/MS model. See the average pooled super-low reso-
lution data in figure 4(a). The hybrid DSC/MS model can
recover flow structures as well as the reference DNS data
from very coarse input data on 4× 4 grid. From these ob-
servation, we confirm the remarkable strength of the hybrid
DSC/MS model for super-resolution in turbulent flows.

Let us assess the reconstructed kinetic energy spectra
over the spatial wave number k. The energy spectrum com-
puted by max and averaged pooled medium and low reso-
lution reconstructed fields using the hybrid DSC/MS model
are shown in figure 4(b). The dashed and dotted lines are
kcutoff of the coarse input data and kmax of reconstructed

data, respectively. The maximum wave number kmax is de-
fined where the kinetic energy spectra of reference DNS and
reconstructed data matches up to 90%. It can be seen that
the kmax are recovered by super-resolution reconstruction.
The recovery ratio kmax/kcutoff based on max and average
pooled low-resolution data are approximately 4 and 2, re-
spectively. The difference of the recovery ratio between the
max and average pooling inputs is influenced by the initial
error level, as shown in figures 4(a) and (b). Although not
shown, similar results are obtained for the velocity v flow
field and energy spectra. From these results, we find that
proposed machine-learned model is effective in providing
the super-resolution data for turbulent flows.

For further details on the case of using the vorticity
field ω as input/output attribute and the dependence of the
number of the training snapshot data nsnapshot, we refer the
readers to Fukami et al. (2018b).

CONCLUSION
We proposed a machine-learned super-resolution anal-

ysis approach for reconstructing flow fields. Two-
dimensional cylinder wake and NACA0012 airfoil wake
were considered as laminar flow examples. The proposed
hybrid DSC/MS model was found to reconstruct the flow
structures and the probability density function well. In the
grossly coarse input data for the two-dimensional turbulent
flow, the DSC/MS model was able to recover the flow field
on 128×128 image from on input data with as little as 4×4
pixels. The capability of present model was also shown in
the energy spectra profile. As future analysis, extensions
to three-dimensional flows and the parameter-tuning of ma-
chine learning models can be considered. Moreover, we
plan to apply the machine-learned super-resolution method
to the analysis of PIV measurements and LES (subgrid-
scale) modeling.
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