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ABSTRACT
By means of direct numerical simulations, we investi-

gate turbulence of an incompressible fluid confined in pre-
cessing containers. In the numerical scheme by a finite-
difference method (Komoda & Goto, 2019), we use a flexi-
ble grid generation algorithm so that we can simulate turbu-
lence in a precessing sphere, spheroids, and cylinders. We
reveal the transition route to developed turbulence and its
sustaining mechanism in these containers. When we fix the
spin rate and increase the precession rate from zero, the in-
ternal flow in each container changes to be the solid-body
rotational flow about the spin axis, periodic flow, weak tur-
bulence without small-scale turbulent eddies, and developed
turbulence. The most developed turbulence is sustained
when the magnitude of the precession angular velocity is
about 10 % of the spin in the case that precession axis is
perpendicular to the spin axis. Stronger precession drasti-
cally reduces the turbulence in a central region of the con-
tainers and leads to two-dimensionalization along the pre-
cession axis. The transition from steady flow to developed
turbulence is continuous for the precessing sphere, whereas
it is accompanied by a hysteresis loop for spheroids (with a
sufficiently large ellipticity η) and cylinders. We also show
that the most developed turbulence in these containers al-
ways has a pair of twisted three-dimensional container-size
vortices. The large-scale shear flow around these vortices
stretch and amplify small-scale turbulent eddies.

INTRODUCTION
The target of the present study is turbulence driven by

the precession of a container. Here, the “precession” is de-
fined by the rotation of the spin axis of a rotating object
(Fig. 1). In the followings, the angular velocities of the spin
and precession are denoted by ΩΩΩ s and ΩΩΩ p, respectively. In
the present study, we consider only the case that ΩΩΩ s ⊥ ΩΩΩ p.

Turbulence in a precessing container (sphere, spheroid,
and cylinder) has been extensively studied by many re-
searchers, in particular, by geophysicists because the Earth
is precessing slowly (in a period of about 26 000 years) and
because the generation mechanism of geodynamo is a cen-
tral issue of the field. This flow system is attractive also in
engineering applications. Furthermore, the physics behind
the sustainability of the strong turbulence is a scientifically
important unsolved problem. We emphasize that this flow
system is one of the canonical wall-bounded flows, which
has been studied since the age of Poincaré (1910).

Modern studies of this flow system were triggered by
the laboratory experiments by Malkus (1968) and the the-
ory by Busse (1968). The former experiments showed that

developed turbulence was sustained in a weakly precessing
(Ωp < Ωs) sphere and spheroid. On the other hand, the
latter theory analytically derives steady flows in precess-
ing spheroids. Fifty years have passed since these semi-
nal studies, and many experimental and theoretical studies
were conducted. However, the detailed route to developed
turbulence and its sustaining mechanism have not yet been
revealed. This is because it is hard to experimentally inves-
tigate three-dimensional flow structures, and because theo-
retical studies are limited within the linear regime. In the
present study, we conduct a series of the direct numerical
simulations (DNS) of developed turbulence in a precessing
sphere, spheroids, and cylinders with systematically chang-
ing control parameters. The main aim of our DNS is to
reveal the transitional route to developed turbulence, the
three-dimensional structures of the turbulence, their sus-
taining mechanism, and its dependence on the container’s
shape.

CONTROL PARAMETERS
We non-dimensionalize the governing equations by us-

ing the size a (the equatorial radius of the sphere and
spheroid or the radius of the cross-section of the cylinder)
as a characteristic length-scale and the reciprocal Ω−1

s of
the spin angular velocity as a characteristic time-scale of
the system. Then, the non-dimensional velocity uuu(xxx, t) and
pressure p(xxx, t) of the confined incompressible fluid (the
kinematic viscosity of which is denoted by ν) are governed
by

∇∇∇ ·uuu = 0 (1)

and

∂uuu
∂ t

+uuu ·∇∇∇uuu =−∇∇∇p+
1

Re
∇2uuu+2Po uuu× êeep . (2)

Equation (2) is described in the frame rotating at the con-
stant angular velocity ΩΩΩ p (= Ωp êeep) with respect to the
laboratory. Thus, the third term on the right-hand side is
the Coriolis force, and p includes the centrifugal potential.
Note that (2) depends on two non-dimensional parameters:

Re =
a2Ωs

ν
(Reynolds number) (3)
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Figure 1. (a) Precessing spheroid. The numerical grid is drawn on the surface of the hemi-spheroid (z > 0) and on the
equatorial plane (z = 0). Note that the gird is boundary-fitted and does not have a coordinate singularity. For visibility, we
reduced the number of grid points. (b) Precessing cylinder. The numerical grid (with a reduced number of grid points) is drawn
on the equatorial planes and bottoms of the cylinder.

and

Po =
Ωp

Ωs
(Poincaré number) . (4)

These parameters indicate the spin and precession rates, re-
spectively. We impose the non-slip boundary condition on
the container’s wall. Therefore, once we fix the shape of
the container, in addition to these two parameters (Re,Po),
a shape parameter such as the ellipticity η = (a− b)/a for
a spheroid with the polar radius b [Fig. 1(a)] or the as-
pect ratio Γ = L/(2a) for a cylinder with the axial length
L [Fig. 1(b)] controls the flow state. Hence, the control pa-
rameters are (Re,Po,η) for spheroids and (Re,Po,Γ ) for
cylinders.

DIRECT NUMERICAL SIMULATIONS
We solve the governing equations (1) and (2) by a

finite-difference method. We use the second-order cen-
tral difference for the spatial derivatives, and the second-
order Crank-Nicolson method for the viscous term and the
second-order Adams-Bashforth method for the other terms
in (2) for the temporal integration.

Although these numerical schemes are standard, our
ingenious method is in the construction of the numerical
grid. We do not use the spherical or cylindrical coordi-
nates which are usually used in the DNS of flow in a sphere,
spheroids, and cylinders. Instead, we use a boundary-fitted
grid shown in Fig. 1. The numerical grid for a spheroid
[Fig. 1(a)] is constructed by solving the Poisson equation,
the boundary condition of which is the so-called cubed
sphere grid. Thus obtained grid does not have a coordi-
nate singularity in the domain (for example, at the center of
the sphere), and, more importantly, we can concentrate the
grid points near the wall, where fine-scale flow structures
appear. Details of the grid generation algorithm are given
in Komoda & Goto (2019). We also emphasize that we can
easily, without modifying the main DNS code, change the
shape of the container. Thanks to this advantage, we con-
duct the DNS of flow in spheroids [Fig. 1(a)] and cylinders
[Fig. 1(b)].

We have conducted grid refinement studies and veri-
fied that the DNS results, with 983 grid points, are in good
agreement with the experimental data under the same condi-
tion (Re,Po,η) (see Fig. 2 in Komoda & Goto, 2019). This
implies that, although the grid used in the present DNS has
strongly distorted cells near the boundary, the numerical ac-
curacy is sufficient for the present purpose.

TRANSITION TO TURBULENCE
For all the containers examined by the present DNS,

for a fixed Re (the spin rate), when increasing Po (the pre-
cession rate), the flow state changes as the solid-body ro-
tation about the spin axis (Po = 0), steady flow (Po ≪ 1),
periodic flow, weak turbulence, and developed turbulence
(Po = O(0.1)). The steady flow is well described by Busse
(1968)’s solution, and the instabilities of the steady flow
were also investigated (Kerswell, 1993; Lin et al., 2015).
However, the fully non-linear regime where strong turbu-
lence is sustained has not been well investigated. The
most developed turbulence is sustained with a relatively
weak precession (Po ≈ 0.1), and if we further increase Po
(say, Po ≳ 0.3) turbulence in the container is drastically re-
duced along the precession axis (êeep), which is a well-known
phenomenon in rotating systems. These numerical results
are consistent with our previous experimental results (Goto
et al., 2007, 2014; Horimoto et al., 2018) for the precessing
sphere and spheroids.

The transition route to the developed turbulence (as in-
creasing Po) in precessing spheroids are shown in Fig. 2(a).
This figure shows the spatio-temporal average K of the ki-
netic energy in the precessing spheroid as a function of Po
for fixed Re (= 104). The ellipticity is set as η = 0, 0.1,
0.15, and 0.2. Note that K is estimated in the frame rotat-
ing at ΩΩΩ p and that K attains its maximum for Po = 0 and
it decreases with Po. K → 0 as Po → ∞ because the flow
tends to the solid-body rotation about the precession axis
in this limit. When K is large, the flow is approximated as
a uniform-vorticity flow [Fig. 2(b)]. The large-K states do
not accompany small-scale turbulent eddies. In contrast, the
developed turbulence with small-scale disordered eddies is
sustained when K is small (K ≈ 0.2) as shown in Fig. 2(c)
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Figure 2. (a) Transition to developed turbulence for a fixed spin rate Re = 104 and changing the precession rate Po in the
spheroids with the ellipticity η = 0 (black), 0.1 (dark gray), 0.15 (gray), and 0.2 (light gray). The upper-triangles denote the
results with increasing Po, while lower-triangles denote those with decreasing Po. The transition is discontinuous for larger
ellipticity (η > 0.1) and hysteresis loops are observed. (b, c) There exist bistable states at (Re,Po,η) = (104,0.085,0.15). Gray
curves are streamlines of the mean flow. As shown in Fig. 3 small-scale turbulent eddies are cratered around this large-scale
structure shown in (c).

Figure 3. Small-scale turbulent eddies in precessing
spheroid (η = 0.1). Red blobs are the isosurfaces of the
instantaneous enstrophy for the same flow condition as in
Fig. 2(c). Turbulent vortices are created around the large-
scale vortex visualized by mean-flow streamlines (gray
curves).

and Fig. 3.
Figure 2(a) shows that the developed turbulence ap-

pears through a continuous transition for the sphere (η = 0)
and the spheroid with η = 0.1, whereas the transition is ac-
companied by a hysteresis loop for spheroids with ellipticity
larger than 0.1 for this Re. For example, for a given set of
parameters (Re,Po,η) = (104,0.085,0.15), we can observe
bistable states. One is weak turbulence [Fig. 2(b)], and the
other is developed turbulence [Fig. 2(c) and Fig. 3]. The
present DNS realize these phenomena previously observed
in laboratory experiments (Malkus, 1968; Horimoto et al.,
2018).

It is interesting to show that this qualitative difference
of the transition (for the sphere and spheroids) to turbu-
lence is well described by using the steady solution by
Busse (1968). For example, we show, by using the solu-
tion, that the discontinuous (i.e. subcritical) transition oc-
curs when η > 10/Re1/2 (Komoda & Goto, 2019). This ex-
pression well explains the DNS results [Fig. 2(a)] as well
as our experimental observation (Horimoto et al., 2018).
Similar analyses of the transition on the basis of Busse’s
steady solution were also made by other authors (Lorenzani

& Tilgner, 2003; Noir et al., 2003).

Furthermore, the present DNS shows that the devel-
oped turbulence appears through a subcritical transition also
in the precessing cylinder with the aspect ratio Γ = 1. This
DNS result is consistent with experiments by Herault et al.
(2015). The DNS for different values of Γ are in progress
and will be reported elsewhere in the near future.

SUSTAINING MECHANISM OF TURBULENCE

As mentioned in the introduction, the most remarkable
feature of this flow system is that the simple motion of the
container drives non-trivial complex flow. In this section,
we summarize our knowledge, which was revealed by the
present DNS, about the three-dimensional turbulent flow
structures and their sustaining mechanism.

The key to the understanding of the sustaining mech-
anism is large-scale coherent flow vortical structures in the
containers. In all the precessing containers examined, we
observe twisted vortical structures (Fig. 4) when the devel-
oped turbulence is sustained. These structures are identi-
fied by the streamlines of the mean flow. It is the shear
flow around these twisted vortices that create small-scale
turbulent eddies. The direct evidence of this mechanism is
shown in Fig. 3. We observe that turbulent vortices (red
isosurfaces) are created in the region with high strain rates.
This mechanism of small-scale turbulent vortices is consis-
tent with the experimental results for the precessing sphere
(Horimoto & Goto, 2017). The present DNS show that not
only in the sphere but also in the precessing spheroids with
a finite ellipticity or even a cylinder, small-scale turbulence
is sustained by being stretched and amplified in the shear
flow around the twisted large-scale vortices (Fig. 4).

The final step to describe the sustaining mechanism
of the precession-driven turbulence is to explain the ori-
gin of the non-trivial large-scale (cavity-size) twisted vor-
tices (Fig. 4). To show the origin, we investigate the Po-
dependence of them for a fixed Re and η (or Γ ). Then, the
observed flow structures in Fig. 4 are explained as a simple
structure, which appears for small Po, deformed due to the
Coriolis force.
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Figure 4. Streamlines of the temporally-averaged velocity in the precessing (a) oblate spheroid (η = 0.1), (b) sphere (η = 0),
(c) prolate spheroids (η = −0.1), and (d) cylinder (Γ = 1). Re = 104. Po = 0.1. In all the cases, the large-scale flow is
composed of a pair of twisted vortices.

CONCLUSION
The flow in a precessing container (Fig. 1) is a canon-

ical wall-bounded flow. By conducting DNS, we have re-
vealed (i) the transitional route to developed turbulence, (ii)
three-dimensional flow structures in the developed turbu-
lence, and (iii) their sustaining mechanism in precessing
containers. Our DNS employ the numerical grid shown in
Fig. 1. It is advantageous in the DNS that we can easily
change the shape of the containers, and we have conducted
the DNS of developed turbulence sustained in a precessing
sphere, spheroids, and cylinders. The present NS show that
the transition to the developed turbulence is continuous in
the sphere, while it is accompanied by a hysteresis loop for
the spheroids with a non-negligible ellipticity η > 10/Re1/2

[Fig. 2(a)] and in cylinders. The most important conclusion
of the present study is that a pair of twisted large-scale vor-
tices always exists in the developed turbulence (sustained
for Po ≈ 0.1 in these containers; see Fig. 4) and shear flow
around these vortices stretches and amplifies the small-scale
turbulent eddies (Fig. 3).
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