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ABSTRACT
The von Kármán swirling flow, produced by two

counter-rotating disc in two different experimental facil-
ities, is investigated experimentally by means of Stereo-
scopic and Scanning-volumetric Particle Image Velocime-
try (PIV). A clear spectral peak is observed in Power Den-
sity Spectra (PSDs) of the velocity fluctuations in the vicin-
ity of the flow’s stagnation point near the centre of the tank.
Its frequency is found to be lower by order of magnitude
than the impeller frequency, indicative of a large-scale mo-
tion. Application of the conditional averaging and Proper
Orthogonal Decomposition (POD) provides insight into the
topology of the flow structure. We find that the structure can
be described as an approximately unidirectional, radially-
oriented velocity field which undergoes a slow precession
around the tank’s axis. This phenomenon appears to be per-
sistent as it is detected in all the studied flow cases. An
analysis of dynamics of the structures shows that it corre-
sponds to the unstable eigenvalues of the linear term of the
momentum equation, indicating what it is a global instabil-
ity mode of a von Kármán flow.

INTRODUCTION
Very large-scale motions (VLSMs) are features ob-

served in a wide range of turbulent flows, e.g. bound-
ary layer flows, Rayleigh–Bernard cells or Taylor–Couette
flows, but have yet to be observed in stationary turbulence

produced in von Kármán type swirling flows. The latter has
been used for turbulence research for almost a century (see
e.g. Batchelor (1951), Mordant et al. (2004)) because it al-
lows for measurements of high Reynolds numbers in a rela-
tively small laboratory (see e.g. Rousset et al. (2014)). Von
Kármán flows provide a reasonable experimental approxi-
mation of homogeneous isotropic turbulence state (HIT, see
Debue et al. (2018)) due to its vanishing mean flow mak-
ing it suitable for Lagrangian measurements with relatively
long tracks (Ouellette et al. (2006)).

The current work investigates low-frequency dynam-
ics associated with VLSM found in von Kármán flows. We
report the existence of energetic, radially-oriented velocity
structure present in the central region of the tank, which
precesses around the tank’s axis with a characteristic fre-
quency an order of magnitude lower than the stirring fre-
quency. This phenomenon appears persistently in five ex-
perimental datasets gathered in two different von Kármán
tank facilities. We characterise the structure in terms of its
energy content, topology, and its implications for meander-
ing of the flow’s stagnation point (see Worth (2010)). Re-
cent studies have identified slow dynamics of a von Kármán
swirling flow (e.g. De la Torre & Burguete (2007); López-
Caballero & Burguete (2013)), mostly in a context of the
mean flow’s symmetry breaking. In particular, it has been
observed that a frontier between two toroidal flow struc-
tures associated with particular impellers (see fig. 1 for a
schematic of the flow) shifts from its initial central position
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Figure 1: General schematic of a von Kármán flows
studied.

Table 1: Parameters of setups (∆x, N, η stand respec-
tively for the experiment’s resolution, number of ac-
quired snapshots and the Kolmogorov length-scale).

Stereo PIV Scanning PIV Scanning PIV
(GTF2) (GTF3) (BMT)

1000 ·FoV/R 128×166 34×34×34 161×160×33

∆x/η 3.1 3.2 6.1

Tacq [s] ∼ 2 ∼ 4 90 <

N 40000 200000 1000

fimp [Hz] 0.2 − 0.4 0.2 0.0056

Re 2×104 − 4×104 2×104 2.3×104

towards one of the impellers as the Reynolds number ex-
ceeds a critical value, and, subsequently, it flips randomly
from one side to the other with a time-scale much longer
than the stirring time-scale. As a result, the flow’s symmetry
around the equator is lost. Such behaviour, however, is not
observed in the present study. The topology of the reported
structure resembles so-called macro-instabilities reported in
stirred vessel flows (e.g. Doulgerakis et al. (2011)). The de-
bate on the origins of those is still ongoing, and the present
finding may bring a new perspective.

EXPERIMENTAL SETUP
Data gathered in two baffled von Kármán tank facilities

is utilised in the preset study: the Cambridge Big Mixing
Tank (BMT), and the Göttingen Turbulence Facility (GTF).
These experimental rigs differ in terms of their design and
have previously been comprehensively documented (Law-
son & Dawson (2014), Xu et al. (2007)). We summarise
the details of these facilities here only briefly. The GTF
consisted of a steel cylinder (radius Rt = 24cm, height
H = 58cm), and two counter rotating impellers (radius
R= 12.5cm). Short, equidistant, axial baffles were attached
to the cylinder’s inside wall at the top and at the bottom (8
at each side), whilst the central area of the cylinder’s inside
wall remained unbaffled. The BMT is a dodecagonal tank
(distance between its parallel walls 2Rt = 2m, H = 2m),
with 12 axial baffles attached in corners of the inner walls
of the tank, and two counter rotating impellers (R = 0.8m).
Figure 1 presents a schematic of the flow configuration and
the coordinate used.

Stereoscopic and Scanning-volumetric Particle Image

Velocimetry (abbreviated as Stereo PIV and Scanning PIV)
techniques were employed (see Lawson & Dawson (2014)).
The Stereo PIV measurements were performed only in GTF
(labels GTF2 and GTF3 are used hereafter to designate re-
spectively Stereo PIV, and Scanning PIV results obtained
in the GTF facility). In each case, the field of view (FoV)
was located in the vicinity of the tank’s centre. Reynolds
number Re based on the radius R and the impellers fre-
quency fimp (i.e. Re = 2πR2 fimp/ν , where ν stands for the
kinematic viscosity) was equal to 2.3×104 and 2×104 for
datasets BMT and GTF3. Three different Re values were
tested within dataset GTF2: 2× 104, 3× 104, and 4× 104.
In all the experiments the acquisition period Tacq was com-
parable with the impellers’ revolution period f−1

imp (it was as-
sumed that the fluctuations decorrelate with a substantially
smaller time scale). In cases of Scanning PIV experiments,
the acquisition consisted of short, time-resolved series of
snapshots instead of just a single snapshot. This allowed us
to resolve acceleration and pressure fields. The Stereo PIV
data was processed using commercial PIV software (LaVi-
sion DaVis). The Scanning PIV data was processed using a
dedicated in-house code. It returned velocity fields as well
as associated acceleration and pressure fields. The diver-
gence correction, as described by Wang et al. (2017), was
applied to the resultant velocity field. Further details of se-
tups are summarised in table 1.

As a final remark it should be noted, that these ex-
periments were originally intended for the interrogation of
small scales of turbulent motion, and thus their parameters
are not optimised for large-scale measurements. However,
in the course of these studies large scales features were dis-
covered and are the focus of this paper.

RESULTS
As stated above, the experimental data was indepen-

dently sampled assuming the largest time-scale was of or-
der of the rotation speed f−1

imp. However, an initial interroga-
tion of temporal power spectral densities (PSDs) of veloc-
ity components presented in fig. 2 (for clarity, only results
based on GTF3 are presented, PSDs in the remaining cases
look alike) shows this is not the case. Firstly, the PSDs are
not flat as they would be in the case of independent snap-
shots. Secondly, broad peaks appear in PSDs of velocity
components perpendicular to the tank’s axis (i.e. u1, u2).
They occur at relatively low frequencies at an order of mag-
nitude smaller than fimp. This observation was found to be
consistent across all our experiments. A mild decrease of
the peaks’ frequency is observed as the Reynolds number
increases: from 0.126 fimp at Re = 2× 104 to 0.116 fimp
at Re = 4× 104. It is noteworthy that López-Caballero &
Burguete (2013) reported a spectral peak located roughly at
0.1 fimp in a von Kármán swirling flow, however, it was only
observed by the author in the vicinity of the side wall (their
tank was unbaffled), and no peaks were observed around the
tank’s centre.

Although the spectral peaks depicted in fig. 2 are rel-
atively modest in amplitude, their appearance suggests the
existence of a large, slow-moving periodic or quasi-periodic
structure in the flow. Insight into its topology can be gained
through conditional averaging, based on a sufficient condi-
tioning variable. Such a variable is not available to us a
priori, but can be inferred from the velocity fluctuations.
Towards this purpose, let us consider an instantaneous ve-
locity field spatially-averaged over the FoV, designated as
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Figure 2: PSDs of particular components of the veloc-
ity field (based on GTF3).

Figure 3: PSDs of u1 and the factors of its decompo-
sition: the magnitude direction and cosine (based on
GTF2).

bue. It was noticed, that in our considered case bue is
coarsely representative of the entire instantaneous velocity
field enclosed in the FoV, i.e.

(
bue

)
rms ' 0.77urms (based

on the dataset GTF2). Moreover, the PSD of bue is very
similar to that of u (as shown in fig. 3). Components of
bue, which are parallel to the radial plane (x1 − x2), can
be further represented respectively as

√
bu1e2 + bu2e2 cosϕ

and
√
bu1e2 + bu2e2 sinϕ , where tanϕ = bu2e/bu1e. Fig-

ure 3 also shows PSDs of particular factors of this repre-
sentation:

√
bu1e2 + bu2e2 and cosϕ . It demonstrates that

ϕ is the only source of spectral peaks, rather the magnitude√
bu1e2 + bu2e2. Based on this it can be concluded, that the

velocity structure, whose imprint is the spectral peak, un-
dergoes quasi-periodic rotation in the radial plane (x1− x2)
and ϕ can be used as the conditioning basis. We use the
prefix “quasi” as the large width of the peak, and the rela-
tively large amount of energy spread across the remaining
frequencies suggests that this precession is irregular. This
was confirmed in an inspection of the temporal evolution of
ϕ (not presented here for brevity).

ŭϕ 'Curms

 1− (x̆k/`k)
2

(µ22x̆2 +µ23x̆3)/Rt
µ32x̆2/Rt

T

(1)

Conditional averaging was executed by binning veloc-
ity snapshots into a number of bins, based on the instan-

(a) (b)

(c) (d)

(e) (f)

Figure 4: Conditionally-averaged velocity field
ŭϕ/urms: (a) slices through its magnitude (isosurface
|ŭϕ |/urms = 1.15 shown in gray), (b) 2-D streamlines
((a) – (b) based on GTF2), (c) – (f) profiles taken
through the coordinate system origin.

taneous value of ϕ , and then averaging over those bins.
Note, that conditional averaging based on ϕ of a structure
which rotates around the tank’s axis is somewhat equivalent
to imaging the resultant conditional structure from different
angles. Thus a 3D reconstruction of the structure’s topology
is possible even in the case of the stereoscopic data. Further,
it is convenient to express results of the conditional averag-
ing in a new coordinate system (x̆1, x̆2, x̆3), which rotates
along with the structure, and whose origin is located on the
structure’s revolution axis (quantities with a breve mark are
expressed in this new system hereafter). Figures 4a and 4b
present a representation of the 3D-reconstructed shape of
the conditionally-averaged velocity field, denoted as ŭϕ .
Its topology is similar across all experiments and can be
described as an almost unidirectional advection along x̆1.
Iso-surfaces of the energy of ŭϕ resemble prolate spheroids
stretched along the axial direction. Conditional streamlines
form a diverging spiral in the plane (x̆2− x̆3), which is nor-
mal to the main velocity direction. Figures 4c to 4f show
profiles of ŭϕ for a more quantitative description. We find
that all the profiles collapse well when normalised with
r.m.s. velocity urms, and when the spatial coordinate is nor-
malised with Rt. ŭϕ can be well-fitted with an analytical
approximation given by eq. (1), where ŭϕ

1 is the dominant
component. Length scales `1, `2, `3 are respectively equal
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(a) (b)

(c) (d)

Figure 5: Results of POD: (a) energy distribution of
the initial POD modes, (b) PSDs of the initial POD
coefficients, (c) – (d) contribution to the velocity field
(i.e. |Φkbk|/urms) from the first two POD modes (iso-
surfaces |Φkbk|/urms = 0.84 shown in gray; (b)–(d)
based on GTF3).

to 0.15Rt, 0.11Rt, 0.22Rt (values averaged across all the
datasets). If we define the size of the conditional structure as
the spacing between the most distant zero-crossings of ŭϕ

1 ,
it equals 2`3 by extrapolation of eq. (1). Thus the structure
occupies a large fraction of the total flow-fields; it is roughly
two times larger than the integral length scale, which can be
approximated as 0.18Rt (when defined as an integral of the
spatial correlation function of the velocity field). The scal-
ing factor C is equal to 1.24, which implies that the contri-
bution to the overall velocity fluctuation variance from the
structure is dominant. Velocity component ŭϕ

2 is the small-
est, and thus not directly presented in fig. 4 for brevity. It
can be fitted with the linear ansatz, where µ22 = 0.54, and
µ23 = −0.40. ŭϕ

3 is also roughly linear, with µ32 = 2.43.
The parameters µi j dictate the spiraling behaviour of the
conditional streamlines in the plane (x̆2− x̆3).

We then applied a POD analysis to our datasets. In this
framework a velocity field u is expressed as a superposition
of the mean field ū, and spatial POD modes Φk multiplied
by time-dependent coefficients bk, as given by eq. (2) (N
stands for the total number of modes). Figure 5a presents
distributions of energy of the POD modes (i.e. b2

k), which
overlap for all the datasets (for the purpose of this compari-
son FoVs were cropped to the same size before POD calcu-
lations; otherwise the distributions appear more scattered,
although their qualitative nature is preserved). The major-
ity of energy, over 65% of the total, is split evenly between
the first two POD modes, while the remaining modes are
much less energetic. Figure 5b shows PSDs of POD coef-
ficients bk. PSDs of the first two are very similar to those
observed in PSDs of velocity fluctuations, which strongly
suggests a link between the velocity spectral peaks and the

Figure 6: Relative coordinates of the conditionally-
averaged stagnation point xs,ϕ (based of GTF3).

first two POD modes. Figures 5c and 5d show the topology
of the first two POD modes. They can be described as a
unidirectional velocity field whose energy decay paraboli-
cally as moving away from the tank’s centre. The appear-
ance of modes 1 and 2 is similar, except for their different
preferential directions, which are rotated by π/2 around the
vertical axis (correlation between mode 1 and mode 2 af-
ter rotation by π/2 is of order 0.8, based on GTF3). The
fact, that both the topology and magnitude of modes 1 and
2 are effectively the same, but phase-shifted by π/2, sug-
gest that they are a single structure that rotates around the
tank’s axis. The velocity field spanned by these modes,
i.e. uPOD = ∑

2
k=1Φ

kbk, is very similar to the previously
considered conditionally-averaged field, thus it can be con-
cluded that both methods point to the same large-scale ve-
locity structure.

u(x, t) = ū(x)+∑
N
k=1Φ

k(x)bk(t) (2)

A major implication of the appearance of the low-
frequency instability is that it causes a meandering of the
time-averaged flow’s stagnation point xs around the tank’s
centre. Indeed, the position of the time-averaged flow’s
stagnation point is hard to converge as reported by Worth
(2010) for example. To assess this effect, let us consider
conditionally averaged coordinates of the stagnation point
based on ϕ , denoted as xs,ϕ . The location of the condi-
tional stagnation point as a function of ϕ , with respect to
the averaged stagnation point, is presented in fig. 6. It is
clear that it moves along a circular trajectory in the radial
plane (x1− x2) as the velocity structure rotates. The exact
value of the trajectory’s radius, however, cannot be confi-
dently inferred from the present experiment as it extends
beyond of the FoV (values given in fig. 6 are based on an
extrapolation of the velocity field of the dataset GTF3 un-
der an assumption of constant velocity gradients). On the
other hand, the axial coordinate xs,ϕ

3 hardly change with ϕ

and stays close to xs
3. This is in agreement with previous

observations of Worth (2010).
It is interesting to note that the revealed structure

shares many similarities with macro-instabilities observed
in stirred vessel flows (in such configurations there is a sin-
gle impeller placed in the centre of the vessel). In particular,
Doulgerakis et al. (2011) presented results of a POD anal-
ysis applied to planar PIV data; the FoV was parallel to the
radial plane (x1− x2) and extended up to over 0.5R. Simi-
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lar to what is seen presently, the first two modes contained
a roughly equal portion of the total energy. The character-
istic frequency associated with these modes was approxi-
mated at 0.1 fimp. The modes looked the same, except for
the phase-shift of π/2. Close to the geometrical centre of
the vessel, they generated a strong, locally unidirectional
flow induced between a pair of counter-rotating axial vor-
tices, located symmetrically around the centre line.

We now focus the dynamics of the considered veloc-
ity structure. Certain properties of POD make uPOD better
suited than ŭϕ for this purpose (i.e. orthogonality of POD
modes and POD coefficients), and thus uPOD is used here-
after. The total velocity fluctuations u′ can be decomposed
into a contribution from the structure ũ= uPOD, and resid-
ual fluctuationsu′′=u′−ũ=∑

N
k=3Φ

kbk. We establish the
dynamical equation governing ũ, by subtracting the time-
averaged momentum equation from the momentum equa-
tion. By projecting the result onto Φk (i.e. by evaluating∫

FoVΦ
k · ∂

∂ tu
′ dx), one gets an ordinary differential equa-

tion (ODE), which dictates the evolution of the associated
POD weightings bk. Eventually, the first two ODEs are mul-
tiplied by the respective modes Φk, and summed together,
yielding eq. (3), i.e. the dynamical equation governing ũ
(the notation {α}k expands as

∫
FoVΦ

k ·αdx).

∂ ũ

∂ t
=

2

∑
k=1
Φk ∂bk

∂ t

=
2

∑
k=1
Φk(Ck +Lkmbm +Qkmnbmbn +ξ

k) ,

Ck =

{
∂u′iu

′
j

∂xi

}k
, Qkmn =

{
∂Φm

i Φn
j

∂xi

}k
,

Lkm =

{
ν

∂ 2Φm
j

∂x2
i
− ∂

∂xi
(ūiΦ

m
j +Φ

m
i ū j)

}k
,

ξ
k =

{
ν

∂ 2u′′j
∂x2

i
− ∂

∂xi

(
u′′i u j +(ūi + ũi)u′′j

)
− ∂ p′

∂x j

}k

(3)

There are four main terms in eq. (3), which relate
to their order in bk. The constant term ΦkCk represents
the contribution from Reynolds stresses. The linear term
ΦkLkmbm corresponds to the interaction between ū and
ũ, and the viscous diffusion associated with ũ. The
quadratic term ΦkQkmnbmbn is the manifestation of the
triple-correlation of components of ũ. Finally, the high-
order term Φkξ k is dominated by self-interactions of u′′,
as well as with ũ and the pressure field. Figure 7a shows
rms fluctuations of radial components of these terms. Re-
sults obtained from datasets GTF3 and BMT are similar (al-
though one should bear in mind the difference in the con-
vergence of statistics evaluated from these two datasets, see
table 1). Thus it can be reasonably argued, that this result is
a robust representation of dynamics of the flow close to the
centre of a von Kármán swirling flow. The high-order term
Φkξ k is the dominant one; it exceeds the linear term (which
is the second most prominent) by almost an order of magni-
tude, while the remaining two terms are even smaller. Fur-
ther insight into the dynamics of ũ is gained by examination
of autocorrelation functions (ACFs) and PSDs of terms of
eq. (3), depicted in figs. 7a and 7b (ACFs were averaged
over all three velocity components). There is a clear, long-
timescale oscillation of the ACF of the linear term (the pe-
riod of the order of 8 f−1

imp); the ACF is equal to 15% after

(a)

(b) (c)

Figure 7: Fluctuations of radial components of terms
of eq. (3): (a) levels of rms (normalised with 2πR f 2

imp,
(b) ACFs, and (c) PSDs ((b) – (c) based on GTF3).

a single impeller revolution. On the other hand, ACFs of
the remaining terms are flat and closely zero. Counterpart
observations follow from PSDs. The spectrum of the linear
term comprises a clear peak, whose locations correspond
with those seen in fig. 2. PSDs of the remaining terms are
almost precisely flat.

Based on the above analysis, the linear term of eq. (3)
appears to drive the velocity structure recognised earlier, as
only this term exhibits a peak in its PSD. The term’s spectral
properties are governed by eigenvalues of Lkm (a matrix of
the size 2×2), denoted here as ζL. In cases of both volumet-
ric datasets, GTF3 and BMT, Lkm is characterised by a pair
of unstable eigenvalues, equal respectively to 0.30± i0.08
and 0.37± i0.11 (when normalised with 2π fimp), which are
similar results. It follows that the linear term of eq. (3)
excites a certain structure (as ℜ(ζL) > 0), whose charac-
teristic normalised frequency equals ℑ(ζL)/2π fimp. This
coincides almost exactly with the characteristic frequency
seen in fig. 2. The results strongly suggest, that the ob-
served structure is a global instability mode (i.e. the unsta-
ble eigenmode of the linear term of the momentum equa-
tion). However, since the linear term constitutes a relatively
small contribution to the total value of ∂ ũ/∂ t, the struc-
ture’s oscillatory evolution enforced by this term can be in-
tensively disturbed by more prominent terms. This corre-
lates with the reported irregular precession of the structure,
as well as with relatively broad support of the spectral peak
seen in fig. 2.

Finally, let us consider sensitivity of eigenvalues of Lkm

to some basic parameters of the flow. It follows from eq. (3),
that Lkm is the function of a few parameters only: Φk, ū, and
ν (or equivalently Re). POD modes can be further approxi-
mated by eq. (1), which is dependant on a few scalar param-
eters. On the other hand, ū can be roughly approximated
around the mean stagnation point xs with a linear function
ūi ' bAi je(x j−xs

j), where Ai j is the mean velocity gradient
tensor (error of this approximation does not exceed 5% for
the dataset GTF3, which is used in this analysis). The direct
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sensitivity analysis to all these parameters can be performed
once these approximations are substituted into the formula
defining Lkm. It has been found that the ℜ(ζL), which re-
lates to the mode’s growth rate, is affected mostly by the di-
agonal elements of bAi je (i.e. ∂ℜ(ζL)/∂bA11e= 1.26), and
partially by Re (i.e. Re

2π fimp
∂ℜ(ζL)/∂Re=0.06). On the other

hand, ℑ(ζL), i.e. the normalised characteristic frequency
of the mode, is dependent almost exclusively on bA12e and
bA21e (i.e. ∂ℑ(ζL)/∂bA21e= 0.87). Effects of the remain-
ing parameters were found to be negligible.

SUMMARY & CONCLUSIONS
We analysed a von Kármán swirling flow near the

tank’s centre, based on a collection of experimental datasets
across two different facilities. Basic characterisation of the
velocity fields revealed the existence of a low-frequency
large-scale motion whose time-scale is roughly 0.1 fimp in
all datasets. It is the dominant flow feature around the
tank’s centre, where homogeneous turbulence is produced,
as it involves over 65% of the total flow’s energy. This is
very different from the homogeneous isotropic turbulence,
which is characterised by more even energy distribution
(von Kármán swirling flow is often compared with the latter
due to the vanishing mean flow and homogeneous velocity
fluctuations near the tank’s centre, see e.g. Lawson & Daw-
son (2015)). We were able to extract the associated velocity
structure utilising conditional averaging and POD (the first
two POD modes represent the structure). A similar struc-
ture topology emerged from all the considered datasets, sug-
gesting the robust nature of our finding. The structure can
be briefly described as an almost unidirectional, radially-
oriented velocity field, whose magnitude decreases parabol-
ically as moving away from the tank’s centre. It under-
goes a slow, highly perturbed precession around the tank’s
axis. The approximated size of the structure equals roughly
0.45Rt (when sized based on the results of conditional av-
eraging), which is over two times than the integral length
scale. Thus the structure can be referred to as a (very) large-
scale motion.

Analysis of the derived dynamical equation governing
the evolution of the structure shows that its linear term is
characterised by a pair of unstable eigenvalues. Their char-
acteristic frequencies overlap with the peak frequency seen
in the PSD of the velocity fluctuations. This indicates that
the structure is a global instability of a von Kármán swirling
flow. Although the linear term of eq. (3) is non-negligible, it
is not the dominant one. Non-linear interactions involving
the residual fluctuations are far more prominent by almost
an order of magnitude. However, unlike the linear term,
they lack a long-time correlation. These non-linear inter-
actions can potentially disturb the periodic evolution of the
structure driven by the linear term, which would explain the
observed irregular structure’s precession. A simple sensi-
tivity analysis shows that the characteristic frequency de-
pends mostly on two components of the velocity gradient
tensor, i.e. A12 and A21. It would be interesting to val-
idate this observation in future research through altering
non-dimensional values of A12 and A21, possibly by vary-

ing design of baffles or by using a different aspect ratio of
the tank.

The observed phenomenon is in many aspects similar
to the so-called macro-instability reported in the context of
stirred vessels (see e.g. Doulgerakis et al. (2011)). The ori-
gins of those macro-instabilities are debated in the scientific
community. We believe that the present work, although not
directly related to a stirred vessel flows, brings a valuable
contribution to this debate. macro-instabilities are debated
in the scientific community.
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