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ABSTRACT
The reflection of a planar shock on a wavy wall is

simulated in two-dimensional geometry by using the gas
kinetic scheme (GKS). A high-order accurate reconstruction
based on minimized dispersion and controllable dissipation
(MDCD) is implemented in the second-order accurate GKS
to improve the accuracy and resolution.

We have investigated the unsteady flow features for dif-
ferent shock reflection cases. These cases are designed for
different Mach numbers with various shapes of the wavy-
wall individually. Comparisons with experimental data in-
cluding mean velocity fields and unsteady flow field are
presented in this paper. The triple points, which are sponta-
neously formed on the shock front, cause a periodic cellular
wave pattern similar to that of a cellular detonation. As a
result of the interaction between transverse waves and the
shedding slip lines, large eddy structures are formed at the
crest and trough of the sinusoidal wall. Also, the small eddy
structures caused by the Kelvin-Helmholtz instability (KHI)
will develop in the shocked gas and interact with the large
eddies. The effects of Mach numbers and the wall-shapes
on the flow instability are analysed in the present paper.

INTRODUCTION
The interaction of shock waves with reflector surfaces

is important for aviation safety and detonation ignition. In
this shock induced flow phenomenon, several flow instabili-
ties occur at the same time which may lead to the turbulence
regime. Such as the Kelvin-Helmholtz instability (KHI)
and Richtmyer-Meshkov instability (RMI). RMI plays an
important role in Inertial Confinement Fusion (ICF) and as-
trophysical fluid dynamics. It is generated when a shock
wave refracts through the interface between two materials.
Perturbations on the interface grow in size and cause the
materials to mix [RICHARD & HOLMES (1999)]. After
re-shock, the turbulent mixing layer develops rapidly. Be-
sides, there will be wave patterns caused by the reflected
shock. These patterns, often called "cellular pattern", be-
come obvious when the density ratio is large enough, and
the interface is just like the wavy-wall reflector. At the

mean time, the KHI is often considered as the secondary
small-scale turbulent mixing phenomenon Rikanati et al.
(2006). Several theories and numerical research [Lodato
et al. (2016), Lodato & L. Vervisch (2017)] have been con-
ducted on small amplitude wavy-wall shock reflection, and
compared with the experiments [Denet et al. (2015)]. Under
this condition, they have proved that the flow pattern is gov-
erned by the motion of triple points, and the viscosity has
little influence on the post-shock flow feature. Meanwhile,
the shockMach number is a key factor. Also, there are many
studies about the complex flow features after shock reflec-
tion from parabolic and cylindrical surface [Shadloo et al.
(2014)].

In this study, direct numerical simulations using GKS
are carried out to investigate the flow instabilities in two
dimensional shock reflection cases. These cases are de-
signed for various shapes of the wavy-wall with different
Mach numbers. Comparisons with experimental data and
among different cases including the re-shock case are pre-
sented at different time. Also, the origin and development
of the instabilities of slip lines are analysed.

NUMERICAL METHODS
Gas Kinetic Scheme

GKS is based on a time-dependent evolution solution
of the Bhatnagar-Gross-Krook (BGK) model for Boltzmann
equation, and targeting on the numerical solution of the
compressible Navier-Stokes equations Xu (2001). The 3D
BGK equation can be written as:

∂ f
∂t
+ u ·

∂ f
∂x
=
g− f
τ

(1)

where f is the gas distribution function and g is the equilib-
rium state approached by f . Both f and g are functions of
space x(x1, x2, x3) time t, particle velocities u(u,v,w), and
internal variable ξ . The relationship between the particle
collision time τ and viscosity can be written as τ = µ/p.
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The equilibrium state is a Maxwellian distribution:

g = ρ

(
λ

π

) K+3
2

e−λ
[
(u−U )2+ξ2

]
(2)

where ρ is the density, U (U,V,W ), are the macroscopic
velocities, internal variable ξ2 = ξ21 + · · · + ξ

2
K , K = (5−

3γ)/(γ−1) is the total number of degrees of freedom, γ is
the ratio of specific heat , and λ = 1/(2RT ), R is the universal
gas constants, and T is the temperature. The general time-
dependent solution of f can be obtained as:

f (x, t, u, ξ ) =
1
τ

∫ t

0
g
(
x′, t ′, u, ξ

)
e−(t−t ′)/τdt ′+e−t/τ f0(x−ut)

(3)
where f0 is the initial gas distribution at beginning of each
time step, and x′ = x− u

(
t − t ′

)
is the particle trajectory.

In order to update the macroscopic flow variables, the
finite-volume method (FVM) is used:

Qn+1
i jk = Qn

i jk +
1

Vi jk

	
Si jk

∫ tn+∆t

tn
FdtdS (4)

where Q denotes the macroscopic conserved quantities, and
F is the numerical flux. Their relationship with the gas
distribution function:

Q = (ρ ρU ρE)T =
∫

fψdΞ (5)

Fm =

∫
um fψdΞ (6)

where ψ is the component of the vector of moments

ψ =
(
ψ1,ψ2,ψ3,ψ4,ψ5

)T = (
1,u,v,w,

1
2

(
u2 + v2 +w2 + ξ2

))T
(7)

and dΞ = dudvdwdξ is the volume element in the phase
space with dξ = dξ1dξ2 · · ·dξK .

The two unknowns g and f0 must be specified to get
the gas distribution function f .In order to target on the NS
solution, the first order of Chapman-Enskog expansion gives
the form (For example , along the normal direction x1 of the
interface):

f0(x,u, ξ) =
(
1+ alm xm − τ

(
almum + Al

))
(1−H[x1]) gl

+
(
1+ arm xm − τ

(
armum + Ar ))H[x1]gr

g(x, t,u, ξ) =
(
1+ (1−H[x1]) alm xm +H[x1]arm xm + At

)
g0

(8)
where H[x] is the Heaviside function, g0 is a local
Maxwellian distribution function located at interface (x1 =
0), the symbol ’l’ or ’r’ means the left or right side of the
cell interface, a and A correspond to the spatial and temporal
derivatives of the distribution function:

a = aαψα = (∂g/∂x)/g

A = Aαψα = (∂g/∂t)/g
(9)

Just like the traditional FVM schemes, FV-GKS is also
composed of an initial reconstruction stage followed by a

dynamical evolution stage. In the reconstruction stage, we
use the second order MUSCL interpolation with van Leer
limiter, the flow variable Q is distributed linearly in cell j:

Q j (x) = Q j + L (s+, s−)
(
x− x j

)
(10)

where the Q is the cell averaged conservative vari-
able, their differences between neighbouring cells s+ =(
Q j+1 −Q j

)
/∆x and s− =

(
Q j −Q j−1

)
/∆x , the slop of

Q in cell j is constructed as

L (s+, s−) = (s+, s−)
|s+ | |s− |
|s+ |+ |s− |

(11)

where S (s+, s−) = sign (s+)+ sign (s−).
With the distribution of Q and the relationship in Eq.(4)

and Eq.(9), we can determining a in Eq.(8) . Since mass,
momentum, and energy are conserved during particle colli-
sions, we can get the conservation constraint to determining
A :

∫
ψ(au+ A)gdΞ = 0 (12)

Then we get the final explicit form of f :

f (0, t,u, ξ) = (1−C0) g0 + (t − τ+C1) Ag0

+ (−τ+C1 +C2)
(
almumH[u1]+ armum (1−H[u1])

)
g0

+
(
C0 − (C1 +C2) almum −C1Al

)
H[u1]gl

+
(
C0 − (C1 +C2) armum −C1Ar ) (1−H[u1]) gr

(13)
where C0 = e−t/τ, C1 = τC0, C2 = tC0. With the Eq.(5)
we can get the numerical flux, and update the Q using Eq.(3)

Additionally, in order to collocate with curvilinear grid,
we transform the the irregular physical space (x, y, z) into a
regular computational space (ε,η, ζ ). Using the geometric
information of each finite volume gird to calculate the co-
ordinate transformation coefficients, we can obtain all the
derivatives in the computational domain.

The nonequilibrium gas distribution function in GKS
proposes a unified physical dissipation mechanism, which
involves the statistical law of the free motion and collision
of molecules. Benefit from this, GKS can accurately cap-
ture the evolution of shock structures without any additional
means of diagnosing or treating Li et al. (2005). Besides, a
high-order accurate reconstruction based on MDCD is im-
plemented in the second-order accurate GKS to improve the
accuracy and resolution.

Problem setup
According to the experimental data Denet et al. (2015),

the physical domain for the simulations considered in this
paper is 10cm in the streamwise direction (denoted as x)
and 2cm in the transverse directions (denoted as y), shown
in fig.1. A grid sensitivity study using 1024 × 512, 2048 ×
1024, and 4096 × 2048 meshes shows that the most relevant
flow features are well captured with the medium grid whose
spatial resolution is about 20 µm. A plane shock wave
propagating from right to left is initially located at x = 8.0
cm. The right boundary is set as an inflow, whose parameters
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Figure 1: Computation domain schematic

correspond to the compressed state of the incident shock.
Given the incident shockMach number (M1), the post-shock
parameters can be determined according to the Rankine-
Hugoniot relationships. We have investigated the flow with
different, and the flow parameters of M1=1.5 are set tomatch
the experiment of Denet et al. (2015) and the work of Lodato
et al. (2016), and shown in Table1. The top and bottom
boundaries are periodic. As for the no-slip wall profile is
chosen as f (y), and the incident angle of shock θw can be
obtained as:

{
f (y) = Aw cos(2πy

/
λw )

θw = 90◦ + (180◦
/
π)tan−1[−2π χ sin(2πy

/
λw )] (14)

where χ is the shape parameter of the wall (ratio of ampli-
tude to wavelength), and Table.1 shows a case of χ = 0.05.

Table 1: Initial flow conditions.

Item Symbol Value
Domain size Lx × Ly 10.0 × 2.0 cm

Number of elements Nx ×Ny 2000 × 1000
Wavy-wall amplitude Aw 1.0 mm
Wavy-wall wavelength λw 2.0 cm
Incident shock Mach M1 1.5
Incident shock speed ui -514 m/s

Initial speed
u1 0.0 m/s

u2 -237.96 m/s

Initial density
ρ1 1.208 kg/m3

ρ2 2.25 kg/m3

Initial pressure
p1 101 325.0 Pa
p2 249 090.6 Pa

Viscosity (at 291.15 K) µ0 1.827 ×10−5 kg/(m·s)

RESULTS AND DISCUSSION
In order to investigate the effects of different factors

on the flow instability, cases with for different incident
Mach numbers (M1 = 1.5,3.0,4.3,5.0) and different wall
shapes (χ = 0.05,0.1,0.17,0.32) are performed respectively.
Firstly, the basic flow field is analyzed for the benchmark
case (M1 = 1.5; χ = 0.05) and comparedwith the experimen-
tal results. Most instantaneous flow structures are shown in
numerical Schlieren images at M1 = 3.0, where the images
of slip line have the best display effect. And detailed analysis
are given to explain the mechanics of the slip line instabil-
ity. Then, the comparison between different flow cases are
discussed and show us the effects of incident Mach number
and wall shapes on the various flow instabilities.

Verification of results
Aswe can see from the fig.2, Due to the small amplitude

of the wavy-wall, the reflection is regular and there is no
transition to Mach reflection during the whole interaction
between the incident shock and the wall. But the reflected
shock front appears to have a smoothly curved profile just
after reflection. The triple points will form spontaneously
when the saddle points move to the shock front. And we can

Figure 2: Streamline at 10 µs, 20 µs, 25 µs after reflection,
Coloured by the local Mach number

calculate the transverse velocity uT of the triple points, and
the angle between the horizontal and the normal oriented in
the opposite direction to propagation αn shown in fig.3. The
quantitative comparison of uT and αn with the experimental
data is shown in Table2.

Figure 3: Streamline and the triple point, Geometrical
construction of the transverse wave front

Table 2: Comparison to experiments.
(uT is the transverse velocity of triple point

αn is the angle between reflect shock and Mach stem)

Exp GKS error

uT 310 310±3 ±1%

αn 133.7 137.4±2 2∼5%

Also, a qualitative comparison of the simulated Density
gradientmagnitudewith the experimental schlierens is given
in fig.4. The results are presented at the instants of 120
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µs and 200 µs after after reflected from the wall. The
comparison is quite satisfactory.

Figure 4: Comparison with the experiment, M1 = 1.5.

Instantaneous flow features
The main flow structures are like a cellular pattern

caused by themotions of triple points and the waves. Results
are shown at both early fig.3 and late time fig.13 after the
shock reflection. As the typical three-shock configuration
in the Mach reflection presented in textbooks COURANT
& FRIEDRICHS (1948). The triple points observed on the
cellular shock wave is constituted by four lines ending at the
same point: an incident shock (IS), a reflected shock (RS),
another shock called a Mach stem (MS) and a slip line (SL),
which is located in the portion of gas between the Mach
stem and the reflected shock. A pair of the spontaneously
formed triple points moves along the shock front in oppo-
site direction, causing the transverse waves travelling among
the post shock flow field. After each collision of the triple
points, the slip line will shed and encounter at the crests and
troughs. The large scale vortex is formed when the slip line
encounters and interacts with each other, shown in Fig.5.
In the late time as shown in Fig.6, the unstable flow field
will be shocked again. And after the re-shock process, the
instabilities develop into the turbulence regime quickly.

Figure 5: Density gradient magnitude, at 112 µs after
reflected from the wall.

Figure 6: Density gradient magnitude, 364 µs (the
re-shock already happened).

Slip line instability
As we can see in the instantaneous flow Fig.5, there are

obvious slip line instabilities happened both in large-scale
and small-scale. When the shed slip lines encounter at the
crests and troughs, there will be a jet flow between the two
structures because of the symmetry. Themushroom-like un-
stable structures appear under the RM instability mechanics.
On the other hand, under the action of the molecular vis-
cosity, the slip line is transformed into a thin shear layer,
far away from the encounter point, shown as Fig.7. In the

Figure 7: The thin shear layer on the slip line.

work of Rikanati et al. (2006), this slip-stream instability
is described as a secondary small-scale turbulent mixing
phenomenon. The growth rates of the large-scale Kelvin-
Helmholtz shear flow instability can be used to model the
evolution of the slip-stream instability in ideal gas. We
can also see the fusion of small vortex in the shear layer in
Fig.8, which indicates small-scale instability of the slip line
is dominated by the Kelvin-Helmholtz instability Wan et al.
(2017).

Figure 8: Merger of the small vortex.
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Effects of the Mach number and wall shapes
In order to investigate the influence of the wall shapes

on the flow instability, shock reflections on different wavy
wall are simulated at high Mach number cases (M1 =
3.0,4.3,5.0). According to the smallest value of θw , dif-
ferent reflection types may occur at specific Mach num-
ber [G.Ben-Dor. (2007)], including Regular reflection (RR),
Double-Mach reflection (DMR), Transitional-Mach reflec-
tion (TMR), Single-Mach reflection (SMR) (Fig. 9). Four

Figure 9: Different reflection types with the change of χ,
at M1 = 3.0.

different wall shapes are simulated correspond to the four re-
flection types receptively, as shown in Fig.10. For the deep
cavity wall shapes, shock focusing occurs with a jet flow.
We have also compared the scaled jet velocity between two

Figure 10: Density gradient magnitude at 10 µs after
reflection (χ = 0.05,0.1,0.17,0.32), M1 = 3.0

typical wall shapes (χ = 0.17 and Cylindrical surface) at
different high Mach numbers in fig. 12.

Figure 11: Diagram of the dimensionless speed

In three dimensional experiments, [Shtemenko &
Shugaev (1997)] pointed out that if the Reynolds number
is equal to 2-3e5, and the Mach number is equal to 4.3-5,
the instability of vortices at the end of the jet may cause

Figure 12: velocity of the primary jet scaled by the speed
of shock front, as a function of Mach number. Circle:
Cylinder surface; Square: Sinusoidal surface χ=0.17

a disturbance on the shock front. Because of the resonant
excitation of vortices, the flow inside the cylinder cavity be-
comes turbulent. But we haven’t found this phenomenon
at the same condition in two-dimensional flow. Thus a 3D
simulation is what we expect to do next.

CONCLUSIONS
In our simulation of the highMach number shockwavy-

wall reflection, we found that the small-scaled instability of
the vortices formed on slip-lines is governed by Kelvin-
Helmholtz mechanism and the interaction with transverse
waves. whereas, the large-scaled one is caused by the en-
counters of the slip line, and under the RM instability mech-
anism.

After the study of the wall shape effect on the flow in-
stability, it can be find that for the sinusoidal wall shapes, the
range χ =0.13-0.21 is shown to be easier for excitation insta-
bility, where the jet is even stronger than the two-dimensional
cylinder surface case. For all deep cavity wall shapes, shock
focusing occurs with a jet flow, whose scaled velocity is lin-
early dependent on the incident shock Mach number. And
the jet influences the stability of the post-shock flow.

Even though there are some studies show that distur-
bances at the shock front occur under appropriate conditions.
However, two-dimensional cases have some inhibition ef-
fects on the development of instabilities of the jet and the
shock front. As an outlook, three-dimensional simulations
including boundary-layer effects will be carried out on.
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