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ABSTRACT
The interface between two miscible fluids in stable

stratification can be destabilized by a vertical periodic forc-
ing as a result of the Faraday instability. As a result, the
turbulent mixing layer of size L(t) grows as long as inter-
nal gravity waves are excited by the parametric resonances.
Eventually, the instability saturates to a final size Lsat re-
cently predicted and successfully assessed numerically for
a wide range of parameters and initial conditions. The out-
comes of this work are twofold: (i) We observe numeri-
cally the transition of the instability from a harmonic to a
sub-harmonic regime, and characterise it as a transition to
turbulence. (ii) We determine the mixing efficiency of the
turbulent Faraday instability using the concepts of sorted
density fields and background potential energy: notably, the
cumulative mixing efficiency decreases with larger forcing
intensity, irrespective of Lsat .

INTRODUCTION
The interface of a two layer system of immiscible flu-

ids can be destabilized by a vertical periodic forcing and
produce a great variety of structures as a result of the Fara-
day instability (Faraday, 1831). When miscible fluids are
considered, a turbulent mixing zone of extent L(t) can grow
in size as long as internal gravity waves are excited by the
parametric resonances (Zoueshtiagh et al., 2009). Eventu-
ally, the instability saturates - since the mean density gradi-
ent decreases with time - to a size Lsat recently predicted in
Gréa & Ebo Adou (2018) using notably a stability criterion
and multiple-scale analysis: Lsat = 2AtG0(2F + 4)/ω2,
where G0 is the gravitational acceleration, F the forcing in-
tensity, ω the forcing pulsation, and At the Atwood number.
This prediction was successfully assessed numerically for a
wide range of parameters and initial conditions.

In what follows, two features are addressed. First,
the transition of the instability from a harmonic to a sub-
harmonic regime was observed in Gréa & Ebo Adou (2018)
in the homogeneous framework. In the full inhomogeneous
system with the reservoirs of pure fluids, the harmonic to
sub-harmonic transition is observed here as well starting
from an interface. This transition is interpreted as a tran-

sition to turbulence with a noteworthy change in global
anisotropy between the two regimes.

Secondly, we determine the mixing efficiency of the
turbulent Faraday instability using the concepts of sorted
density fields and background potential energy (Winters
et al., 1995). This allows us to understand why the final
size of the mixing zone obtained numerically Lend always
slightly exceeds the prediction Lsat .

High resolution direct numerical simulations (DNS)
of the Navier-Stokes Boussinesq equations are performed
with 10243 points using a pseudo-spectral code in a triply-
periodic box of size 2π . The kinetic energy is initially zero
and is fully created by the instability; the kinematic viscos-
ity is set to ν = 10−4 and the concentration variance is in-
jected at small scales to disturb the initial interface. Further
details can be found in Briard et al. (2019), and parameters
are gathered in Table 1.

Table 1: Parameters of the 10243 DNS with ν = κ =
10−4, ordered by increasing F . Forcing intensity F ;
Atwood number At ; Pulsation ω; Gravitational accel-
eration G0; Final cumulative mixing efficiency ηc

b .

Name F At ω G0 ηc
b

F055A015 0.55 0.015 3.46 65.15 0.420

F07A045 0.7 0.045 4.29 65.15 0.410

F1A01 1.0 0.01 0.7 10.0 0.415

F1A02 1.0 0.02 1.0 10.0 0.420

F1A1 1.0 0.1 2.2 10.0 0.413

F2A01 2.0 0.01 0.8 10.0 0.391

F5A01 5.5 0.01 1.0 10.0 0.254

F8A02 8.0 0.02 2.0 10.0 0.198
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THE TRANSITION
Within the rapid acceleration model (Gréa, 2013)

where viscous effects and non-linearities are discarded in
order to keep only production terms and the interaction be-
tween turbulence and mean fields, the fluctuating concentra-
tion c = C−C verifies a classical Mathieu equation (Gréa
& Ebo Adou, 2018)

∂ 2ĉ
∂ t2 +N2 sin2(θ)(1+F cos(ωt))ĉ = 0, (1)

whose stability diagram is given in figure 1. Here, θ is
the angle between the vertical axis and the wavevector kkk,
N =

√
2AtG0/L is the stratification frequency, ĉ is the

Fourier transform of c, and C is the horizontally-averaged
concentration field. For a given initial condition at a fixed
F , a whole horizontal segment delimited by two crosses
is excited: the l.h.s. extremity corresponds to θ = 0, and
the r.h.s. to θ = π/2. Hence, at each time, the extent
of the segment is [0;(N/ω)2], where, the r.h.s. extremity
(N/ω)2 corresponds to the mixing zone size L(t). Two
cases should be distinguished: the instability is not trig-
gered (red cross), meaning that the initial excited segment
is entirely in the grey stable region at left. The second case
is when (N/ω)2 falls beyond the marginal stability curve,
meaning that some θ -modes are excited (green, yellow and
blue crosses). Hence L(t) will grow in size and thus (N/ω)2

will decrease toward the left of the diagram, indicated by ar-
rows. If (N/ω)2 is initially in the harmonic tongue, then the
harmonic to sub-harmonic transition can be observed. More
precisely, we define the time at which the transition occurs
when all harmonic modes have become stable, correspond-
ing to the mixing layer size L = Ltr.
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Figure 1: Mathieu diagram: stability curves (black)
separate stable regions (grey) from harmonic and sub-
harmonic unstable regions. The marginal stability
curve is displayed as a dashed red curve. Various ini-
tial conditions, delimited by crosses× (from θ = 0 to
θ = π/2), are discussed in the text.

We are now interested in the time evolution of the mix-
ing zone size L(t): four runs are presented in figure 2 for
F = 1 and F = 2. These configurations have almost the
same prediction Lsat , see Table 1, and hence comparable
final size Lend in the asymptotic state, but different tran-
sients. The transition size Ltr corresponds to the size from
which harmonic modes are no longer excited, as shown in
figure 1. The values of Ltr are quite similar for the runs

presented in figure 2: Ltr ' 0.44, reported as −· horizon-
tal lines. Since all modes θ ∈ [0;π/2] are excited at each
time, this value of Ltr can be crossed several times, like for
F = 1, or only once, like for F = 2. The last time for which
Ltr is crossed corresponds to the harmonic to sub-harmonic
transition, and is indicated by a vertical dashed line: for
instance, this is at ωt = 44 for run F1A01. The transition
occurs much more rapidly for F = 2 than F = 1: this is ex-
pected since with a larger forcing intensity F , L(t) grows
more rapidly. On the contrary, at F = 1, the transition is
delayed with an increasing Atwood number.

Note that for all runs, the final size of the mixing zone
Lend exceeds the prediction by roughly 20%, and this fea-
ture, already observed in Gréa & Ebo Adou (2018), will be
explained in the next section.

0 50 100 150

ωt

0

1

2

3

4

L
(t
)

Run F1A02
Run F2A01
Run F1A01
Run F1A1

Lsat

Lend

Ltr

Figure 2: Mixing zone size L(t); horizontal dashed
lines correspond to the prediction Lsat . Vertical
dashed lines indicate the separation between the har-
monic and sub-harmonic regimes.

From figure 2, the transition is hardly visible on L(t),
which should oscillate in the harmonic regime twice as fast
as in the sub-harmonic one. The Fourier transform of L̇
reveals an intense peak at f = ω/(2π) corresponding to
the sub-harmonic regime, and a second moderate peak at
f = ω/π corresponding to the harmonic regime. A more
convincing proof is nevertheless proposed by analysing the
global anisotropy of the concentration field. We use the di-
mensionality parameter sin2

γ , which reflects the directional
anisotropy of a scalar field for statistically axisymmetric
configurations (Gréa, 2013):

sin2
γ =

∫
∞

0
∫

π

0 Ecc(kkk, t)sin3
θdθdk∫

∞

0
∫

π

0 Ecc(kkk, t)sinθdθdk
. (2)

Here, Ecc(kkk) = Ecc(k,θ) is the spectral two-point concen-
tration correlation: note that for an isotropic state, sin2

γ =
2/3. The time evolution of sin2

γ is presented in figure 3
for runs F1A01 and F2A01. For F = 1, the transition is
clearly visible, with the period in the sub-harmonic regime
being twice as large as in the harmonic one. Anisotropy is
maximal in the harmonic regime and increases (sin2

γ de-
parts from 2/3): since the limit sin2

γ = 0 corresponds to
sheet-like structures, the information provided by sin2

γ is
consistent with structures being more and more tilted to-
ward the horizontal while approaching the transition. Then,
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global anisotropy decays (sin2
γ tends to 2/3) after the tran-

sition and during the sub-harmonic regime due to more in-
tense turbulent transfers. The increase of sin2

γ is consis-
tent with structures being dominantly vertically aligned and
stretched. In the asymptotic state, sin2

γ roughly oscillates
close the isotropic value 2/3. The scenario is a bit differ-
ent for F = 2: since the harmonic regime is very short as
noted above, the concentration field is less anisotropic be-
cause structures do not have time to be significantly tilted.
In the asymptotic state, the concentration field is slightly
more anisotropic with F = 2 than for F = 1 because the
instability was much sorter, and thus less mixing occurred.
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Figure 3: Concentration global anisotropy indicator
sin2

γ; the vertical dashed line indicates the separation
between the harmonic and sub-harmonic regimes.

We pursue our analysis of one-point statistics to better
characterise the transition between the harmonic and sub-
harmonic regimes. Previously, it appeared that the growth
of the mixing zone mainly occurs in the sub-harmonic
regime, whereas global indicators revealed that the har-
monic regime was more anisotropic than the sub-harmonic
one. Hence, there is a severe change in the dynamics at
the transition. Hence, the Froude number Fr = εuu/(NKuu)
- where Kuu = 〈uiui〉/2 is the kinetic energy and εuu its
dissipation rate - and the integral Reynolds number ReL =
K2

uu/(νεuu) are investigated in figure 4.
The time evolution of Fr is presented in figure 4 for

runs F1A01 et F2A01. In the harmonic regime for F = 1,
Fr is rather small because of the strong stratification. Then,
from the transition and during the sub-harmonic regime, Fr
significantly increases because turbulent exchanges become
more intense, consistently with the strong growth of the
mixing zone size L(t) observed previously. In the asymp-
totic state, Fr decreases with the decay of the turbulence
intensity due to the saturation of the instability. For F = 2,
the harmonic regime is almost not visible as pointed out
previously. The Froude number strongly increases towards
larger values than for F = 1, as expected since production is
more intense. The instability saturates more rapidly as well,
thus shortening the turbulent sub-harmonic regime.

The Reynolds number, displayed in figure 4 as well,
also shows the great enhancement of turbulence after the
transition. From almost 0, it reaches its maximum value
' 9.103 in the sub-harmonic regime, and then settles around
103 in the asymptotic saturated state. The intensification of

turbulent features and the creation of small scales partici-
pate as well to the reduction of global anisotropy from the
transition, as observed in figure 3 for F = 1.
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Figure 4: Turbulent quantities for runs F1A01 (black)
and F2A01 (light blue): Fr on the left y-axis, and ReL
on the right one for run F1A01.

MIXING EFFICIENCY
Now that the transition between the harmonic and sub-

harmonic regimes has been characterised and interpreted as
a transition to a turbulent state where the mixing zone grows
significantly, we aim at quantifying the irreversible mixing
of the flow using mixing efficiency and background poten-
tial energy (Winters et al., 1995; Peltier & Caufield, 2003).

The total potential energy being Ep =
∫

ρ ′gzdV , and
having ρ ′ ∼ 2Atρ0c within the Boussinesq approximation,
we refer hereafter unambiguously to the normalized poten-
tial energy per unit surface as

ep(t) =
Ep(t)
4π2ρ0

= 2AtG0

∫
C(z, t)zdz. (3)

Since ep can be modified by adiabatic processes (reversible
mixing), we are interested in the sorted concentration field
C(z∗) which depends only on the probability density func-
tion (PDF) of the concentration field f (C). z∗ is the position
in the state of minimum potential energy attainable through
an adiabatic redistribution of C. This minimum potential
energy is the background potential energy defined as

eb
p(t) = 2AtG0

zmax∫
zmin

C(z∗)z∗dz∗, (4)

and reflects the amount of gravitational potential energy ep
expanded in mixing the two fluids. The reference state
is computed from the PDF as in Davies Wykes & Dalziel
(2014) according to z∗(C) = zmin +(zmax− zmin)

∫C
0 f (x)dx

where zmin and zmax are the boundaries of the fluid domain.
Here, the PDF is built with 4096 points. Then, the avail-
able potential energy ea

p = ep− eb
p corresponds to the en-

ergy that would be released during an adiabatic transforma-
tion toward the background state. In other words, ea

p is the
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fraction of total potential energy which can be converted
into eb

p through irreversible mixing.
We are now interested in the energy contents of run

F1A01. The PDF of the concentration field is presented
in the inset of figure 5 at three different times. Initially,
f (C) is sharply peaked around C = 0 and C = 1. At
ωt = 69 when L(t) is maximum, there is a noteworthy bump
around C = 0.5 reflecting that there is more and more mix-
ing. The time evolution of the three potential energies is
displayed in figure 5 for the same run. The background
potential energy (red) increases monotonically as the irre-
versible mixing of the two fluids progresses. Notably, eb

p
increases substantially only after the transition, and this
is verified for all runs. The gain of background poten-
tial energy over the whole simulation can be evaluated as
∆eb

p = AtG0(L̃2
end −L2

0)/12, where L̃end is the final mixing
zone size computed with the sorted profile C(z∗). For run
F1A01, ∆eb

p = 0.079, which is in good agreement with the
plot of figure 5. The gain in background potential energy
varies by more than one order of magnitude depending on
the control parameters.

An additional outcome is that available potential en-
ergy (blue) is maximal in figure 5 when L(t) reaches the
saturation prediction Lsat at ωt ' 70. This explains why
in Gréa & Ebo Adou (2018) and in figure 2 the final size
Lend always exceeds the prediction. Indeed, Lsat corre-
sponds only to the saturation of the instability. After the
saturation, the ea

p is partially released in the flow as eb
p. This

additional background potential energy eventually makes L
slightly larger than Lsat despite the saturation of the insta-
bility.
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p for run F1A01. First inset: PDF

at time t = 0, ωt = 40, and ωt ' 69 when L(t) is max-
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We now move on with estimating the mixing efficiency
of our turbulent instability, if any sense can be given to an
instantaneous mixing efficiency in a framework with a pe-
riodic forcing. We consider three different possibilities to
compute the mixing efficiency hereafter. A first definition is
borrowed from Venayagamoorthy & Koseff (2016), where
the mixing efficiency reads ηPE = εPE/(εPE + εuu), where
εPE = N2εcc(dC/dz)−2, and is like a flux Richardson num-
ber. This definition is more robust than others which rely
on the scalar flux 〈u3c〉 that accounts for reversible mixing.
Nevertheless, this definition intrinsically takes into account

both reversible and irreversible mixing since it is not based
on C(z∗). The instantaneous mixing efficiency ηPE is given
in figure 6 for run F1A01. Oscillations are quite wide be-
cause εuu and εPE oscillate in phase opposition. After the
transition, ηPE decays due to the strengthening of the tur-
bulence. In the saturated state, ηPE roughly settles around
0.35. The second definition can be found in Peltier & Cau-
field (2003); Davies Wykes et al. (2015) and is based on
the background potential energy. The instantaneous mixing
efficiency reads ηb = εb/(εb + εuu), where εb is the dissi-
pation rate of the background potential energy density. The
time evolution of ηb in figure 6 is quite similar to the one
of ηPE , but with oscillations of smaller amplitudes. This is
expected since reversible mixing is excluded while using εb
rather than εPE .

It becomes clear with figure 6 that there is no real
meaning to an instantaneous mixing efficiency in a period-
ically forced system. Instead, we compute the cumulative
mixing efficiency (Peltier & Caufield, 2003)

η
c
b(t) =

∫ t
0 εb(t ′)dt ′∫ t

0 εb(t ′)dt ′+
∫ t

0 εuu(t ′)dt ′
. (5)

This definition provides a smooth time evolution compared
to the previous definitions ηPE and ηb. The final value for
run F1A01 is ηc

b = 0.415, which is close to the final value
of ηb: final values of ηc

b for the other runs are gathered
in Table 1 as well. It is worth noting that ηc

b is much less
sensitive to the control parameters than ∆eb

p. An interest-
ing finding is that the cumulative mixing efficiency tends to
decrease with larger F , irrespective of Lsat . Indeed, with
larger F , the instability saturates rapidly and thus there is
less time for irreversible mixing.
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Figure 6: Instantaneous mixing efficiencies ηPE (blue)
and ηb (black), along with the cumulative mixing ef-
ficiency ηc

b (red) for run F1A01.

The particularities here are that the flow is unsteady
because of the periodic forcing, and that most of the mix-
ing happens in the sub-harmonic regime, which represents
a short time of the simulation, and in a small domain be-
tween the two reservoirs of pure fluids. Although there is a
conceptual complexity of evaluating mixing efficiency in a
transitory and periodically forced system, the different esti-
mations tend to qualify the Faraday instability as an efficient
mixing process.
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CONCLUSION
When a two layer system of stably stratified miscible

fluids is accelerated vertically and periodically, a turbulent
mixing zone may develop as a result of the Faraday insta-
bility. It eventually reaches a final state at the end of para-
metric resonances, where the final saturated size Lsat was
predicted in Gréa & Ebo Adou (2018) and assessed for a
wide range of parameters.

Here, we have observed numerically for the first time
the transition of the miscible Faraday instability from a har-
monic to a sub-harmonic regime in the full inhomogeneous
system starting from an interface. Our primary goal was
to characterize this transition. Therefore, we identified a
robust scenario describing the dynamics of structures. In
the harmonic regime, the fields are highly anisotropic be-
cause vertically elongated structures develop. A sudden de-
crease in anisotropy occurs at the transition since turbulence
is strongly enhanced, which creates small scales that par-
tially restore isotropy. Then, in the sub-harmonic regime,
global anisotropy slightly increases because structures align
again in the vertical direction.

One-point turbulent quantities such as the Froude
and Reynolds numbers confirm that the harmonic to sub-
harmonic transition is a sharp transition to turbulence. Re-
garding the mixing zone size L(t), it strongly increases only
from the transition. It has been shown that for similar final
states Lend , various transients can be observed depending on
the control parameters, with or without harmonic regimes.

Afterwards, we determined the time evolution of the
background potential energy eb

p which is a measure of the
irreversible mixing of the flow, starts only after the transi-
tion. A major outcome of this analysis is that at saturation
of the instability, available potential energy ea

p is partially
released as background potential energy eb

p in the flow: this
additional irreversible mixing causes L to grow beyond Lsat .
This notably explains why in Gréa & Ebo Adou (2018) the
final size obtained numerically Lend always exceeds the pre-
diction Lsat .

Finally, three different definitions of the mixing effi-
ciency were compared: we argue that it might not be rel-
evant to investigate instantaneous mixing efficiencies since
our flow is highly unsteady and mixing occurs within a lim-
ited time and space domain. The cumulative mixing ef-

ficiency ηc
b however has a smooth evolution. It is worth

noting that its final value decreases with larger forcing pa-
rameters F , irrespective of Lsat : indeed, with larger F , the
instability saturates quickly and the mixing process is short-
ened.
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