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ABSTRACT
Direct numerical simulation of a swirling pipe flow is

performed to investigate the effects of Reynolds number and

swirl on turbulence statistics. The swirling motion is im-

posed via a constant azimuthal body force coupled with a

body force in the axial direction that drives the flow. The

friction Reynolds numbers are Reτ ≈ 170 and 500 with a

pipe length of 8πδ (where δ is the pipe radius). The simu-

lations are performed with a swirling force matching that of

the axial forcing. The swirling motion appears to have an

opposite influence on the near-wall axial flow statistics for

the two Reynolds numbers. An analysis of the azimuthal

turbulence statistics lead to an introduction of a mixed scal-

ing to collapse the azimuthal velocity profiles and the total

stresses.

Introduction
Swirling flow in a confined region has many engineer-

ing applications, and we are motivated by two specific sce-

narios: (i) combustion chambers — where the incoming

flow is swirled to stabilise the flame, and (ii) transport and

separation in particle laden flows — where swirling flow in

a pipe can centrifugally separate the particles due to their

higher density compared to the fluid.

Typically the effect of swirl on turbulent pipe flow

is studied by either rotating the pipe walls which has the

usual axial flow – where the maximum axial velocity is at

the wall and called a centripetal swirl (Orlandi & Fatica,

1997; Eggels, 1994; Leclaire & Jacquin, 2012; Facciolo

et al., 2007)), or by imposing an azimuthal flow over the

existing axial flow – where the maximum axial velocity

is somewhere between the wall and the centerline, and

called a centrifugal swirl (Kitoh, 1991; Pierce & Moin,

1998; Zonta & Soldati, 2013). The latter method is more

practical in industrial scenarios where azimuthal jets of air

are injected into an axial pipe flow. Although numerically

this can be simulated where the flow develops downstream,

however, if the flow development (after a short transient) is

happening slowly, one can use an axially periodic computa-

tional domain and implement efficient simulation strategies

by using an azimuthal body force. Pierce & Moin (1998)

studied several body force implementation strategies, and

we follow a similar method (to be explained in detail

later). We note here that most studies (computationally

as well as in laboratory experiments) have considered the

case of a rotating pipe wall, which is relatively ‘simple’ to

understand.

Aims:

As such, we observe that there is a dearth of data for cen-

trifugal swirl cases, and one of the aims of this paper is

to present direct numerical simulation (DNS) data for dif-

ferent axial Reynolds number (Reτ ) and swirl strengths.

This extends our earlier work (Chin & Philip, 2018) where

we looked at a fixed Reτ . Here, Reτ = uτ ,xδ/ν , where

uτ ,x is the x-direction friction velocity =
√

ν dUx/dy|y=0

with y := δ − r, δ the pipe radius and ν the kinematic

viscosity of the fluid. We take (x, r, θ ) coordinate sys-

tem with (Ux, 0, Uθ ) and (ux, ur, uθ ) the corresponding

mean and fluctuating velocities, respectively. Secondly, we

want to test the scaling of basic turbulent statistics, such as,

mean axial and azimuthal velocities as well as the turbulent

stresses. In an axial flow with no swirl, the uτ ,x is the typical

scaling velocity close to the wall, where as in swirling flows

we now have uτ ,θ =
√

ν dUθ /dy|y=0, and the appropriate

scaling velocity for different turbulent statistics is unclear.

Swirl generation and the numerical method

As briefly mentioned above, we intend to simulate a

scenario wherein once the swirling flow enters the pipe, it is

in an ‘equilibrium’ condition, i.e., the swirl strength is con-

stant and does not decay downstream. This is a reasonable

assumption if we consider a section of the pipe that is short

compared to the distance over which swirl decays. The ax-

ially and azimuthally averaged mean axial and azimuthal
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momentum equations are (e.g., Pierce & Moin, 1998):

1

r

d

dr
(rτxr)+ fx = 0, (1a)

1

r

d

dr
(rτrθ )+

τrθ

r
+ fθ = 0, (1b)

where, the total stresses (per unit density) τxr = ν dUx

dr
−

〈urux〉, and τrθ = ν
(

dUθ
dr

− Uθ
r

)

−〈uruθ 〉. Here, fx is the

forcing in x equal to the constant axial pressure gradient

(per unit density), and fθ is the azimuthal forcing, given by

fθ = a fx, whereby a is a percentage of fx.

Pierce & Moin (1998) have compared different kinds

of forcing, fθ (r), and don’t find significant differences be-

tween them. Our choice is based on simplicity in imple-

mentation and also the resultant mean equations of motion

in (1). The swirl number S is the ratio of the axial fluxes of

the azimuthal to axial momentum defined as,

S =

∫

ρUxUθ r2 dr dθ

δ
∫

ρU2
x r dr dθ

. (2)

To perform the swirling pipe flow simulations, fully

developed turbulent pipe flow data from Chin et al. (2010)

is utilised to start the simulation. The numerical scheme

employed to perform the pipe flow simulations is detailed in

Blackburn & Sherwin (2004). The fluid flow in the axial and

azimuthal directions is driven by the body forces fx and fθ ,

respectively. The fx utilised in the simulations correspond

to friction Reynolds numbers of Reτ ≈ 170 and 500. The

simulations parameters are summarised in table 1.

Results
Here we present four different simulations, corre-

sponding to a = 0% (no forcing, L0) and 100% (L100)

forcing at the lower Reynolds number Reτ ≈ 170; no

forcing (H0) and 100% (H100) at moderate Reynolds

number Reτ ≈ 500. Figure 1 shows the contours of the

instantaneous axial velocity ũx close to the wall at y+ ≈ 15

for the four cases. The near wall streaks with the azimuthal

spacing of ≈ 100 viscous units are present in figure 1(a) for

no forcing. With forcing, in figure 1(b), the streaks tilt at

an angle due to the azimuthal mean velocity. Interestingly,

we observe a more organised patch of streaks with imposed

swirl, as if the low momentum regions are trying to

separate from the high momentum ones. With increasing

Reτ (c.f., figure 1c), the streaks are still of the same size

≈ 100 viscous units, although now they appear smaller

due to the figure scaled in outer units. We note that with

similar percentage of azimuthal forcing, the Reτ ≈ 500

case exhibits higher axial velocity than the Reτ ≈ 170

case. With swirl (c.f., figure 1d), we now observe a more

organised low and high momentum regions, again tilted

due to the non-zero Uθ . These organised banded motion is

reminiscent of the laminar-turbulent patterns in transitional

shear flows (e.g., Prigent et al., 2002; Duguet et al., 2010;

Philip & Manneville, 2011; Chantry et al., 2016). Although

the Reynolds numbers are far off from the transitional

regime, we speculate that the swirl has a tendency to make

the flow less turbulent (especially close to the wall), and

any process that tries to reduce the turbulence levels forces

the flow to organise spatially into low/high turbulence
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Figure 1. Instantaneous axial vorticity in the x− rθ plane

for all cases at wall-normal location y+ ≈ 15. From top to

bottom: low Reynolds number non-swirling pipe L0, low

Reynolds number 100% forcing L100, moderate Reynolds

number non-swirling pipe H0, moderate Reynolds number

100% forcing H100.

regions. The organisation we see in figure 1(d) could have

some links to this patterning mechanism.

Mean velocity

The mean axial velocity profiles (Ux) are presented in two

different ways in figure 2. Here, the black (dark) lines are

at low Reynolds numbers (Reτ ≈ 170); solid lines denotes

L0 and dashed lines represent L100. The higher Reynolds

number cases (Reτ ≈ 500) are in red (lighter) coloured lines,

wherein again solid and dashed-lines represent no swirl H0

and swirl cases H100, respectively. Same line-styles are

used in subsequent figures too.

Figure 2(a) shows the axial velocity profiles nor-

malised by the bulk velocity of the non-swirling pipe flow.

We normalise such that the non-swirl bulk flow Ubulk =

1. Low Reynolds number shows swirl decreases velocity

from the wall to the centre compared to the non-swirl case,

whereas for the higher Reynolds number case there is an

increased velocity in the near-wall and a decrease in the

outer region. This non-monotonic behaviour of swirl with

the change in Reτ suggests that different wall-normal re-

gions of the flow responds slightly differently to swirl, and

further investigation focusing on different regions might be
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Table 1. Summary of numerical simulation parameters.

Case Reτ fθ Lx ∆x+ ∆r+ ∆rθ+ S

L0 170 0 fx 8πδ 6.7 [0.5, 3.6] 8.4 0

L100 170 1 fx 8πδ 6.7 [0.5, 3.6] 8.4 0.28

H0 500 0 fx 8πδ 6.8 [0.07, 5.5] 8.2 0

H100 500 1 fx 8πδ 6.8 [0.07, 5.5] 8.2 0.17
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Figure 2. Mean axial velocity profile for all cases. (a)

Ux/Ubulk versus y/D and (b) Ux normalised by uτ ,x versus

y+. black solid line (L0), black dashed-line (L100), red

solid line (H0) and red dashed-line (H100).
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Figure 3. Azimuthal velocity profile for cases L100 (blue

dash-line) and H100 (blue solid line).
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Figure 4. Turbulence intensities of swirling pipe flow

compared to DNS straight pipe. (a) Axial velocity turbu-

lence intensity, (b) azimuthal velocity turbulence intensity

and (c) radial velocity turbulence intensity. The lines sym-

bols are as in figure 2.

helpful. In figure 2(b) we normalise the mean profile by

uτ ,x. There is a collapse for low Reynolds number only, and

that too close is to the wall. In both Reτ -cases, it seems that

the wake is significantly affected than the near wall-region

(except, of course, the mean flow inclination).

The azimuthal mean velocity profiles (Uθ ) are pre-

sented in figure 3. Again, black dash-line shows the low

3



11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11)

Southampton, UK, July 30 to August 2, 2019

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 5. The total stresses Reynolds stress for cases L100

(black) and H100 (red). (a) τ+xr =
dU+

x

dy+
−〈urux〉

+, dashed

lines – τ+xr , dot line – 〈urux〉
+ and solid line –

dU+
x

dy+
. (b)

τ×
rθ =

( dU×
θ

dy×
−

U×
θ

y×

)

−〈uruθ 〉
×, dashed lines – τ×

rθ , dot line

– 〈uruθ 〉
× and solid line –

( dU×
θ

dy×
−

U×
θ

y×

)

.

Reynolds number case L100 and red dashed-line is for

the moderate Reynolds number case H100. Although

not shown here, we find that Uθ does not scale well with

either uτ ,x or uτ ,θ . Interestingly, a mixed scaling seems

to collapse the profile well. The mixed velocity scale

uτ ,xθ :=dUθ/dy+ = uτ ,θ

(

uτ,θ

uτ,x

)

. We define the normalised

Uθ , U−
θ := Uθ /uτ ,xθ . In any case, as expected, the outer

region flow (which does not scale with inner variables)

increases with increased Reynolds number.

Turbulent normal stresses

The r.m.s for axial, azimuthal and radial velocities, nor-

malised with their corresponding uτ ,x, are shown in figure

4(a, b, c) respectively. Figure 4(a) shows a reduced turbu-

lence intensity at the near-wall for low Reynolds number,

but an opposite trend is present for higher Reynolds num-

ber. In the outer region, both show an increased turbulence

intensity for the swirling flows. In the inner region, the

trend for higher and lower Reτ cases are different. This

behaviour is similar to what we found for the mean axial ve-

locities. The r.m.s for azimuthal and radial velocities (c.f.,

figures 4b and c) for the swirling cases show an increase ev-

erywhere in the pipe compared its non-swirling counterpart.

Turbulent and total shear stresses

Next we investigate the total shear stresses associated with

the mean axial and azimuthal equations of motion. Figure

5(a) shows the axial total stresses for the both low L100

(black) and high H100 (red) Reynolds number swirl cases.

The total stresses collapse on to the line τ+xr = 1 − y/δ ,

which is similar to a non-swirl pipe flow. This is evident

after integrating (1)(a) once. As in the non-swirl case, in the

outer region where the viscous component (in solid lines) is

small, the turbulent shear stress (in dot-solid lines) follow

the 1−y/δ line. With increasing Reynolds number, the tur-

bulent stress contribution increases while the viscous stress

decreases.

The shear stress in the azimuthal direction is presented

in figure 5(b). The profiles are normalised by the azimuthal

friction velocity uτ ,θ , denoted by a superscript ‘×’. Since

τr,θ is less common than τx,r, in the following we provide

some additional details. Starting with (1b), i.e.,

1

r

d

dr
(rτrθ )+

τrθ

r
= − fθ , or,

dτrθ

dr
+2

τrθ

r
= − fθ , and, integrating once,

τrθ = = −
r

3
fθ +

C

r2
, (3)

where C is the contant of integration. Now, applying bound-

ary condition at r = 0, implies that C = 0. At r = δ , and

recalling that τrθ = ν
(

dUθ
dr − Uθ

r

)

−〈uruθ 〉, we obtain,

u2
τ ,θ =−ν

dUθ

dr

∣

∣

∣

∣

∣

r=δ

=
δ

3
fθ . (4)

Also, for large r where viscous component of the stress be-

comes small, and hence (3) reduces to,

〈uruθ 〉 ≈
r

3
fθ =

(δ −y)

3
fθ , or,

〈uruθ 〉
× ≈ 1−

y

δ
, (5)

Figure 5(b) clearly shows this expected trend in 〈uruθ 〉
×.

Trends similar to τxr is observed for τrθ , where Reynolds

stress increases and viscous stress decreases with increasing

Reynolds number.

Conclusions
Swirling pipe flows are compared to non-swirling pipe

flows at low and moderate Reynolds numbers. When swirl

is introduced, we observe a strong tendency for the flow to

organise itself into high and low momentum zones in the

near-wall region. There is also an increased turbulence in-

tensity associated with the swirling cases. A mixed-scaling

is used to collapse the azimuthal velocity profile in the near-

wall region. The axial and azimuthal total stresses collapse

when scaled with the axial and azimuthal friction velocities

respectively. Consistent with the mean equations of motion,

both exhibit a slope of −1 in the outer region.
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