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INTRODUCTION
The characteristics of layers of intense shear are inves-

tigated in the fully-developed turbulent region of a mixing
layer at high Reynolds number. The database employed has
been generated with a large scale Direct Numerical Simula-
tion (DNS).

In the last few decades, numerical and experimental in-
vestigations showed that a thin layer separates the turbulent
region from the non-turbulent irrotational fluid in a number
of different flow configurations. At this thin layer, com-
monly known as turbulent/non-turbulent interface (TNTI),
a jump in velocity, vorticity, and concentration of passive
scalar was observed and quantified (see da Silva et al.
(2014)). This jump was found to govern the entrainment
and the growth rate of the turbulent flow.

Recently, Eisma et al. (2015) showed that layers of in-
tense shear, somehow similar to the TNTI, exist within the
internal region of a turbulent boundary layer. Later, de Silva
et al. (2017) examined the interfaces between adjacent uni-
form momentum zones in a turbulent boundary layer. Both
studies showed that jumps in the streamwise velocity exist
across internal layers, and scale with the friction velocity,
while the thickness of these interfaces scales with the Tay-
lor microscale. Layers of intense shear were also reported
in homogeneous isotropic turbulence at very high Reynolds
number, both from statistical considerations (Elsinga et al.
(2017)) and instantaneous snapshots (Ishihara et al. (2013)).
The analysis of the average flow pattern in the local coor-
dinate system defined by the eigenvectors of the strain rate
tensor revealed a shear-layer structure consisting of aligned
vortical motions (Elsinga & Marusic (2010), Elsinga et al.
(2017)). A similar structure was also observed from in-
stantaneous snapshots, where sharp layers of approximately
four Taylor length scales of thickness were found to bound
regions of different large-scale velocities (Ishihara et al.
(2013)).

The existence of internal layers was so far ascertained
in turbulent boundary layers and in homogeneous isotropic
turbulence, while boundary-free shear flows have never
been examined. Moreover, while Attili et al. (2014) and

Gampert et al. (2014) reported a jump across the TNTI of
a mixing layer, the concentration of a passive scalar across
the internal layers has never been analysed.

The main goal of the present study is to investigate
the internal layers of a mixing layer at high Reynolds num-
ber. Profiles of velocity and scalar concentration at different
Schmidt numbers are examined across these layers. Three
different streamwise locations, characterised by different
Reynolds number, are considered. The largest Reynolds
number of the mixing layer under analysis is Reλ = 275,
and to the authors’ best knowledge, this is the largest ever
achieved in DNS simulations of this flow.

NUMERICAL SIMULATIONS
The dataset employed in the present analysis was gen-

erated with a large-scale DNS of a high Reynolds number,
spatially developing, mixing layer, featuring a grid of about
18×109 points. The configuration and methods applied in
these simulations are described in details by Attili & Bisetti
(2012) and Attili et al. (2014). Analogous DNS datasets of
a mixing layer were previously employed to investigate the
interaction between the large and the small scales of turbu-
lence (Fiscaletti et al. (2016b) and Fiscaletti et al. (2016a)).
Compared to the simulations described in the cited papers,
the Reynolds number of the turbulent flow that is analysed
here was increased up to Reλ ≈ 275.

METHOD OF ANALYSIS
A Cartesian system of coordinates is introduced within

the numerical dataset, where the x-axis is oriented along the
streamwise direction of the flow, the y-axis along the cross-
wise direction, and the z-axis along the spanwise direction.
The coordinate system is centred in a corner of the three-
dimensional numerical domain, on the low velocity side.
The method for the identification of the internal layers, and
for the calculation of the conditional averages of velocities
and scalar concentration is presented in this Section.
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Figure 1. Shapshot of ωSH(x,y,z)
∣∣∣
IL

at constant z, ob-
tained as explained in Equation 2. Streamwise and
crosswise coordinates, respectively x and y, are non-
dimensionalized by the local momentum thickness δθ . The
red dots are the local maxima of ωSH(x,y,z)

∣∣∣
IL

along the
crosswise direction y, and indicate points of internal layers.

1. With the aim of detecting the internal layers, we apply
the triple decomposition method introduced by Kolář
(2007). The velocity gradient tensor is decomposed
into the sum of three different terms, which account
for rigid-body rotation, elongation, and shear:

∇u = (∇u)RR +(∇u)EL +(∇u)SH (1)

Among these three terms, only the shear contribu-
tion was considered in the calculation of the vorticity,
ωSH(x,y,z). An analogous approach was applied by
Eisma et al. (2015), and further details can be found in
their paper.

2. The mean of the shear component of the vorticity is
calculated, ωSH(x,y), in the entire domain.

3. At each streamwise location, the maximum of
ωSH(x,y) is calculated and the following threshold is
applied to identify the internal layers IL:

ωSH(x,y,z)
∣∣∣
IL

> K ·ωSH
max,y(x) (2)

where K is a constant. The value of K is chosen in
such a way to identify only the intense events and,
at the same time, to identify a sufficiently large sta-
tistical sample to guarantee statistical convergence.
In the present analysis, K = 1.5. In points where
the condition expressed in Equation 2 is not verified,
ωSH(x,y,z)

∣∣∣
IL

is set to be equal to zero. A snapshot of

ωSH(x,y,z)
∣∣∣
IL

is given in figure 1.
4. Inside the zones where the condition given in Equa-

tion 2 is verified, the local maxima along the crosswise
direction are calculated, at each downstream location.
These maxima are considered points of the internal lay-
ers (red dots in figure 1).

5. The TNTI, the interface separating the turbulent region
from the irrotational external fluid, is detected using
a threshold on the vorticity magnitude, which is de-
termined following the method proposed by Taveira &
da Silva (2013), and summarized in the Appendix 1 of
Attili et al. (2014). In figure 2, a snapshot of the mag-
nitude of ∇c(x,y,z) is presented, where c is a passive
scalar with Schmidt number Sc = 1.4. The turbulent
region is bounded by the TNTI, which is evidenced by
the black continuous line.

Figure 2. Magnitude of ∇c(x,y,z) on a plane at constant z,
in a streamwise region where Reλ ≈ 250. The streamwise
and crosswise coordinates, respectively x and y, are non-
dimensionalized by an averaged momentum thickness δθ

in this region. The black lines indicate the turbulent/non-
turbulent interfaces on both the high and the low velocity
side of the mixing layer.

6. Profiles centred in the points obtained as explained
the step 4 are computed along the crosswise direction.
Only samples located inside the TNTI are retained, and
contribute to statistics.

7. These profiles are averaged conditioned on the stream-
wise velocity ui of the points of ωSH(x,y,z)

∣∣∣
IL

where

ωSH(x,y,z) is maximum along y (red dots in figure 1).
In particular, the conditional averages of the velocity
profiles are calculated depending on the velocity range
(∆U−ui)/urms to which ui belongs.

RESULTS AND DISCUSSION
Figure 3 shows conditionally-averaged profiles of the

streamwise velocity across the internal layers of intense
shear, obtained as discussed in the previous section, at two
different downstream locations in the mixing layer, cor-

Figure 3. Conditionally-averaged profiles of the stream-
wise velocity in the near-vicinity of all detected internal
layers within the range 0.25< (∆U−ui)/urms < 0.50. Red
full • symbols are obtained at Reλ ≈ 200, blue empty . at
Reλ ≈ 275.
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Figure 4. As in figure 3, but only positive gradients of
du
dy

∣∣∣
IL

at all detected internal layers were retained and con-
tributed to the conditionally-averaged profiles of stream-
wise velocity.

responding to Reynolds number based on the Taylor mi-
croscale of Reλ ≈ 200 and Reλ ≈ 275. All detected inter-
nal layers used to compute the velocity profiles in figure 3
are characterised by 0.25 < (∆U−ui)/urms < 0.50, where
∆U is the difference in streamwise velocity between the
high velocity side and the low velocity side of the mixing
layer. Velocity jumps of modest intensity can be observed
to occur across the internal layers of intense shear. Analo-
gous velocity jumps were found at different ranges of non-
dimensional velocities (∆U−ui)/urms (not shown). These
velocity jumps can be quantified by applying a fitting to the
linear branches of the conditional profiles, as in figure 7(b)
of de Silva et al. (2017). According to this quantification,
the non-dimensional velocity jumps (δu/urms) can be es-
timated to be of 0.17 and 0.11, respectively for Reλ ≈ 200
and 275. This is one order of magnitude lower than the ve-
locity jump observed by Ishihara et al. (2013) in homoge-
neous isotropic turbulence, which was however quantified
from instantaneous snapshots of the intense shear layers.

The conditional velocity profiles presented in figure 3
do not distinguish between positive or negative crosswise
gradients of the streamwise velocity du

dy

∣∣∣
IL

. If we consider

only the velocity profiles characterised by positive du
dy

∣∣∣
IL

at
the internal layers, different conditionally-averaged profiles
are obtained (figure 4). Velocity jumps of much larger in-
tensity, of the order of magnitude of urms, can be observed
in this case. Jumps of comparable intensity are also ob-
served when retaining only those velocity profiles charac-
terised by negative du

dy

∣∣∣
IL

at the internal layers, as showed in

figure 5. The percentage of profiles with du
dy

∣∣∣
IL

> 0 over the
total profiles is found to range between 60% and 70%, de-
pending on the crosswise position within the flow, the non-
dimensional velocity (∆U − ui)/urms), and the Reynolds

number. Therefore, profiles with du
dy

∣∣∣
IL

> 0 are dominant,
which explains the similar trends observed in figures 3 and
4. A non-negligible percentage of velocity profiles at the
internal layers (between 30 and 40%) is characterised by
negative du

dy

∣∣∣
IL

, which leads to mild velocity jumps when
all the detected internal layers are considered in the compu-
tation of the conditionally-averaged profiles (figure 3).

Figure 5. As in figure 3, but only negative gradients of
du
dy

∣∣∣
IL

at all detected internal layers are retained and con-
tributed to the conditionally-averaged profiles of stream-
wise velocity.

The velocity jumps of the internal layers at the three
different Reynolds number and at the different ranges of
non-dimensional velocities (∆U − ui)/urms are presented
in figure 6. Specifically, figure 6a and 6c report the strength
of the velocity jumps associated with profiles where du

dy

∣∣∣
IL
>

0, while in figure 6b and 6d the velocity jumps are associ-
ated with profiles where du

dy

∣∣∣
IL

< 0. In the top figures, the
velocity jumps are non-dimensionalized by the rms veloc-
ity, while in the bottom figures the non-dimensionalization
is done by the large-scale quantity ∆U , the velocity differ-
ence across the mixing layer.

As it can be observed in figure 6, velocity jumps of
more than 10% of ∆U are found on a statistical sense across
the identified layers of intense shear. Also, δu appears

Figure 6. Velocity jump at the internal layers identified by
setting K = 1.5 in Equation 2 for (a,c) positive and (b,d)
negative values of du

dy

∣∣∣
IL

detected within the ranges (green

symbols) −0.25 < (∆U − ui)/urms < 0, (magenta) 0 <

(∆U − ui)/urms < 0.25, (blue) 0.25 < (∆U − ui)/urms <

0.50, and (black) 0.50< (∆U−ui)/urms < 0.75. • indicate
Reλ ≈ 200, � Reλ ≈ 250, I Reλ ≈ 275.
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Figure 7. Thickness of the internal layers identified by
setting K = 1.5 in Equation 2 for (a,c) positive and (b,d)
negative values of du

dy

∣∣∣
IL

detected within the ranges (green

symbols) −0.25 < (∆U − ui)/urms < 0, (magenta) 0 <

(∆U − ui)/urms < 0.25, (blue) 0.25 < (∆U − ui)/urms <

0.50, and (black) 0.50 < (∆U−ui)/urms < 0.75. • refer to
Reλ ≈ 200, � to Reλ ≈ 250, I to Reλ ≈ 275.

to not depend on the range of non-dimensional velocities
where these intense shear layers are detected. This is dif-
ferent from what was found in a turbulent boundary layer,
where larger velocity jumps were detected closer to the
wall, therefore at increasingly larger momentum deficits
(Eisma et al. (2015), de Silva et al. (2017)). It can also
be observed that these velocity jumps non-dimensionalized
by the constant quantity ∆U are characterised by decreasing
intensities for growing Reλ , both for positive and negative

gradients of du
dy

∣∣∣
IL

(figure 6c and 6d).

The velocity jumps across intense shear layers that are
quantified in the present mixing layer can be compared with
those found in different turbulent flows. From DNS simula-
tions of homogeneous isoentropic turbulence at very large
Reλ , Ishihara et al. (2013) examined instantaneous snap-
shots of extreme shear events. The authors reported velocity
jumps of the order of the velocity rms, which is consistent
with the finding of the present analysis (figure 6). From
their analysis on DNS data of both a channel flow and a tur-
bulent boundary layer, Wei et al. (2014) reported velocity
jumps of approximately half the rms velocity (their figure
6d). Similar to Wei et al. (2014), de Silva et al. (2017) and
Eisma et al. (2015) reported smaller velocity jumps than
those obtained here from their experimental investigations
on turbulent boundary layers (see figure 13b of de Silva
et al. (2017) and figure 8a of Eisma et al. (2015)).

Following Brown & Roshko (1974), the thickness of
the internal layers of intense shear δw can be estimated
as the ratio between the velocity jump δu and the maxi-
mum local gradient of the profile ∂ 〈u− ui〉/∂y

∣∣∣
max

. The
thickness of the internal layers associated with profiles with
du
dy

∣∣∣
IL

> 0 and with du
dy

∣∣∣
IL

< 0 is presented respectively in
figures 7a and 7c, and in figures 7b and 7d. This thickness
is non-dimensionalized by the Taylor microscale λ (figures
7a and 7b) and by the Kolmogorov microscale η (figures
7c and 7d), and estimated at different Reλ , i.e. different

streamwise locations, and at different ranges of streamwise
velocities (∆U−ui)/urms.

From figure 7, it is not possible to establish whether the
thickness of the internal layers scales with the Taylor lenght
scale or with the Kolmogorov length scale. This is because
the range of Reynolds number under analysis is not suffi-
ciently large. However, several important observations can
be made. Firstly, the thickness of the internal layers seems
to be insensitive to the velocity range (∆U−ui)/urms. Sec-
ondly, δw/λ ranges between 0.3 and 0.4, which is the same
as what found by Eisma et al. (2015) (their figure 8b), and
very similar to what found by de Silva et al. (2017) (their
figure 13e) in turbulent boundary layers. Moreover, δw/η

is nearly equal to 10, which is the characteristic diameter
of the small-scale coherent structures according to several
studies including Ishihara et al. (2013) and Fiscaletti et al.
(2014), the so-called worms. It can also be observed that
δw remains nearly constant over the four ranges of stream-
wise velocities under analysis, and it shows a decrease when
moving from Reλ ≈ 200 to Reλ ≈ 275. This is analogous
to what observed for the velocity jump δu.

After having examined the profiles of streamwise ve-
locity across the internal layers of intense shear, and having
quantified both their velocity jump and their thickness, we
look at the scalar concentration across these internal lay-
ers. In figure 8, we present conditionally-averaged profiles
of scalar concentration at Schmidt number Sc = 1.4 in the
near-vicinity of all detected internal layers, within the range
0.25 < (∆U−ui)/urms < 0.50, at Reλ ≈ 200 and 275. The
profiles of the scalar concentration are nearly insensitive to
the presence of internal layers of intense shear. A com-
pletely different behaviour can be observed here when com-
pared with the conditional averages of scalar concentration
across the TNTI reported by Attili et al. (2014) and Gam-
pert et al. (2014), who showed remarkably large jumps of
the scalar concentration at the TNTI.

A first important conclusion is that regions of intense
shear are not characterised by strong gradients of a passive
scalar. Therefore, these internal layers, which bound re-
gions of different momentum, do not seem to bound regions
of different passive scalar according to our finding from fig-
ure 8. It is worth pointing out that this finding is indepen-
dent of the method that is adopted for the identification of

Figure 8. Conditionally-averaged profiles of scalar con-
centration at Schmidt number Sc = 1.4 in the near-vicinity
of all detected internal layers within the range 0.25< (∆U−
ui)/urms < 0.50. Symbols are defined in figure 2.

4



11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11)
Southampton, UK, July 30 to August 2, 2019

Figure 9. Conditionally-averaged profiles of streamwise
velocity in the near-vicinity of points of intense magnitude
of the scalar gradient |∇c(x,y,z)|, within the range 0.25 <

(∆U − ui)/urms < 0.50. Red full • indicate Reλ ≈ 200,
black + Reλ ≈ 250, blue empty . Reλ ≈ 275.

these internal layers. A method analogous to the one de-
scribed in de Silva et al. (2017) is also applied, with the aim
of identifying the internal layers. This method is based on
the local probability density function for the identification
of the edges of the uniform momentum zones. Even if ad-
ditional details on this analysis are not reported here for the
sake of brevity, conditionally-averaged profiles analogous
to those presented in figure 8 are obtained.

If we look at the spatial organization of a passive scalar,
this seems to be arranged into layers that preferentially de-
velop along the streamwise direction, x. The described
organization of the passive scalar into streamwise layers
can be observed in figure 2. From this observation, it can
be of interest to check whether strong scalar gradients can
be associated with jumps of the streamwise velocity. The
analysis has the aim of determining whether, across these
layers, the crosswise profiles of both momentum and pas-
sive scalar exhibit analogous behaviours. After identifying
points characterised by an intense magnitude of the scalar
gradient |∇c(x,y,z)|, we thus calculate the profiles of the
conditional average of the streamwise velocity around these
points. This conditional averaging is identified by the sub-
script gsc. The results are presented in figure 9. As it can
be observed, the profiles of streamwise velocity are charac-
terised by a jump, which seems to be stronger for decreas-
ing Reynolds number. The conditionally-averaged profiles
presented in figure 9 include all the points of intense magni-
tude of the scalar gradient |∇c(x,y,z)|. However, analogous
to what we have previously done for the velocity profiles
across the internal layers, these profiles can also be condi-
tioned on the sign of the crosswise gradient of the stream-
wise velocity du

dy

∣∣∣
gsc

(see figures 4 and 5). Although the

results of this additional conditioning are not reported here,
a much larger velocity jump exists when conditioning these
averages on the positive gradients of du

dy

∣∣∣
gsc

, whereas a pro-

file similar to the one reported in figure 5 is obtained when
the conditioning is on the negative gradients of du

dy

∣∣∣
gsc

.

From this analysis, it can be observed that in certain
regions of the flow domain characterised by a strong mag-
nitude of the scalar gradient, |∇c(x,y,z)|, both the stream-
wise velocity and the passive scalar show a jump along the

Figure 10. Joint probability density function of the second
(Q) and third (R) invariants of the velocity gradient tensor
in points of the flow domain characterised by intense mag-
nitude of |∇c(x,y,z)|, at Reλ ≈ 275.

crosswise direction y, i.e. along the direction of mean shear.
These regions are shaped as layers elongated along the x
direction, as it can be seen in figure 2. The simultaneous
presence of a jump across these layers both in the stream-
wise velocity and in the passive scalar suggests that analo-
gies could exist between these layers and the TNTI. With
the aim of exploring the existence of additional similarities
between the layers of intense |∇c(x,y,z)| and the TNTI, the
flow topology of the points constituting these layers is ex-
amined.

The flow topology can be investigated by looking at
the joint probability density function of the second and
third invariants of the velocity gradient tensor, Q and R,
respectively, as explained in Chong et al. (1990). The re-
sults of this analysis are reported in figure 10. As it can
be observed, two flow topologies are mainly present in
these layers of intense |∇c(x,y,z)|. Following Chong et al.
(1990), these are the unstable node/saddle/saddle and the
stable focus/stretching. The strong prevalence of the un-
stable node/saddle/saddle is an evidence that the flow is
strain-dominated. These observations are consistent with
Brethouwer et al. (2003) and Elsinga & da Silva (2019),
among others. The jpdf of conditional Q and R presented in
figure 10 deviates significantly from the unconditional jpdf,

Figure 11. QR scatter plot at yI = 6η from the TNTI in-
side the turbulent region, at Reλ ≈ 250.
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which, even if it is not reported here, has the characteristic
teardrop shape, regarded as a universal characteristic of the
small-scale turbulence (Elsinga & Marusic (2010)).

The second and third invariants of the velocity gradi-
ent tensor are also calculated in the proximity to the TNTI,
specifically in points located at a crosswise distance of 6η

with respect to the TNTI, inside the turbulent region. The
scatter plot of these invariants is presented in figure 11.
Similar to the jpdf given in figure 10, a prevalence of un-
stable node/saddle/saddle flow topology is found, which is
again evidence that strain dominates over vorticity. There-
fore, we can conclude that both the internal side of the TNTI
and the layers of intense |∇c(x,y,z)| are characterised by
analogous strain-dominated topological contents.

CONCLUSION

In this work, the properties of the internal layers of
intense shear were investigated in a mixing layer, at high
Reynolds number. These internal layers were identified
with a criterion based on the large values of the shear vor-
ticity. In particular, after decomposing the velocity gradient
tensor into three contributors, i.e. elongation, rigid-body
rotation, and shear, only the shear component was used for
the calculation of the vorticity. Conditionally-averaged pro-
files of the streamwise velocity and of a passive scalar with
Sc = 1.4 were calculated across these layers. The velocity
profiles were also conditioned on the sign of the crosswise
gradients du

dy at the layers.

The results show jumps in the streamwise velocity of
around 10% ∆U , where ∆U is the difference in the stream-
wise velocity between the high velocity side and the low ve-
locity side of the mixing layer. This is considerably larger
than what de Silva et al. (2017) and Eisma et al. (2015)
found in turbulent boundary layers. From these velocity
profiles, the characteristic thickness of the internal layers
could be estimated. When non-dimensionalised by the Tay-
lor length scale λ , this thickness was observed to range be-
tween 0.3 and 0.4 λ , while a thickness of approximately
10η was found, where the non-dimensionalization was by
η , the Kolmogorov length scale. On the other hand, the
profiles of a passive scalar across the internal layers did not
exhibit any jumps. This indicates that the concentration of
a passive scalar changes nearly-uniformly across the layers
of intense shear vorticity. Therefore, these internal layers,
which bound regions of different momentum, do not appear
to bound regions of different passive scalar.

Later, we focused on the layers of intense magnitude of
the scalar gradient |∇c(x,y,z)|, which, similar to the shear
layers, appear elongated along the streamwise direction of
the flow (figure 2). Across these layers, conditionally-
averaged profiles of the streamwise velocity were calcu-
lated. It was found that the profiles are characterised by a
clear jump. As a consequence, layers of intense scalar gra-
dients appear to separate both regions of different passive
scalar and regions of different momentum. This observation
suggested that an important analogy exists between these
layers and the internal side of the TNTI, which was later
confirmed by examining the second and third invariants of
the velocity gradient tensor in these points. A prevalence
of unstable node/saddle/saddle flow topology was found in
both layers, which is evidence of strain-dominated features.
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