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ABSTRACT
Decaying turbulence in a salt-stratified fluid with

Schmidt number of 700 is investigated by direct numeri-
cal simulation. When the stratification effect is sufficiently
weak and the Ozmidov scale is far above the Kolmogorov
scale, the density perturbation behaves like a passive scalar
convected by isotropic turbulence, and the corresponding
potential energy spectrum exhibits Batchelor’s k−1 law in
the viscous-convective subrange. In contrast, when the
stratification effect is strong (i.e. after the Ozmidov scale
becomes smaller than the Kolmogorov scale), the spatial
distribution of potential energy shows large clouds of small
structures, and the potential energy has a flat spectrum
rather than the k−1 law. This phenomenon occurs since
the potential energy near the Kolmogorov scale is signifi-
cantly reduced by the counter-gradient vertical density flux
persistently converting potential energy into kinetic energy.
However, if the buoyancy effect reaches down to the Kol-
mogorov scale sooner than the initial potential-energy cas-
cade completes, only the large-scale pancake structures of
potential energy are observed and small-scale fluctuations
are absent.

INTRODUCTION
The ocean and brackish lakes are often density-

stratified due to both temperature and salinity when aver-
aged in time, and their motion is crucially influenced by
the buoyancy caused by the density difference of the wa-
ter. For example, the buoyancy drives the global circulation
of the deep ocean called thermohaline circulation, which
transports a huge amount of heat and carbon and is directly
related to climate change like global warming. Besides, the
density stratification in a brackish lake severely degrades
the water since the buoyancy suppresses the vertical mix-
ing and the resulting hypoxia at the bottom water is fatal to
aquatic organisms.

Since early times, turbulence in a density-stratified
fluid been studied by numerical simulations (Riley, Met-
calfe and Weissman, 1981; Métais and Herring, 1989) and
laboratory experiments (Stillinger, Helland and Van Atta,

1983; Itsweire, Helland and Van Atta, 1986). In labora-
tory experiments, salt water is often used to generate the
density stratification (Fincham, Maxworthy and Spedding,
1996; Praud, Fincham and Sommeria, 2005), but its dissi-
pative scale (Batchelor scale) is too small to be resolved
accurately by the measurement. The salinity has a very
small diffusion coefficient, so that the salinity perturbations
in a turbulent flow decay far more slowly than the velocity
perturbations. The slowness of diffusion is usually quanti-
fied by the Schmidt number, which is the ratio of the kine-
matic viscosity of fluid ν∗ to the diffusion coefficient κ∗

(i.e. Sc = ν∗/κ∗).
Batchelor (1959) showed that a high-Sc scalar con-

vected by isotropic turbulence dissipates at the wavenumber
of k∗B = Sc1/2k∗K (now called the Batchelor wavenumber),
where k∗K(= (ε∗K/ν∗3)1/4) is the Kolmogorov wavenum-
ber (ε∗K being the kinetic-energy dissipation rate). Thus,
the smallest length scale of salinity perturbation (Sc = 700)
would be

√
700(∼ 26) times smaller than the Kolmogorov

scale if the buoyancy effect is negligible. Batchelor also de-
rived a famous k∗−1 power spectrum of the scalar variance
in the viscous-convective subrange (k∗K < k∗ < k∗B), where
k∗ is the wavenumber. His predictions have been con-
firmed later by experiments (Gibson and Schwarz, 1963)
and numerical simulations (Bogucki, Domaradzki and Ye-
ung, 1997; Yeung, Xu, Donzis and Sreenivasan, 2004).

The Schmidt number dependence of stratified turbu-
lence has been discussed by water channel experiments
(Komori and Nagata, 1996), the rapid distortion theory
(Hanazaki and Hunt, 1996), and direct numerical simu-
lations (Gerz and Yamazaki, 1993; Okino and Hanazaki,
2019). However, there are neither experimental nor numer-
ical studies which accurately resolve the density perturba-
tions at the sub-Kolmogorov scales for a Schmidt number as
high as 103. Indeed, most of the recent numerical studies of
stratified turbulence were intended for high Reynolds num-
bers, assuming Sc= 1 (e.g. Bartello and Tobias, 2013; Maf-
fioli and Davidson, 2016; de Bruyn Kops and Riley, 2019).

This paper describes the result of the direct numerical
simulation of decaying turbulence in a salt-stratified fluid
(Sc = 700) to fill the gap between the previous experiments
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and numerical simulations. In particular, we have examined
how the strength of stratification affects the turbulent distri-
bution of density perturbation.

DIRECT NUMERICAL SIMULATION
We consider decaying turbulence in a density-stratified

fluid with Schmidt number of 700. The density stratifica-
tion is stable and uniform (i.e. dρ̄∗/dz∗ = const.< 0, where
ρ̄∗ is the unperturbed density and z∗ is the vertical coordi-
nate). Decaying turbulence with the initial rms velocity of
U∗

0 and the initial integral length scale of L∗
0 is analysed by

direct numerical simulation. In the following, we outline
the methodology since the configuration of the problem and
the numerical procedure are same as Okino and Hanazaki
(2019).

The temporal development of the flow is determined
by the continuity equation, the Navier-Stokes equation with
the Boussinesq approximation and the transport equation of
the density perturbation ρ ′∗(= ρ∗− ρ̄∗(z∗)). They are non-
dimensionalised by the length scale L∗

0, the velocity scale
U∗

0 , and the density scale −L∗
0dρ̄∗/dz∗ as follows:

∂ui

∂xi
= 0, (1)

∂ui

∂ t
+u j

∂ui

∂x j
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+

1
Re0
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∂x2
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0

ρ ′δi3, (2)
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∂x2
j
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where the variables without an upper asterisk denote the
non-dimensional quantities. Here, the Cartesian coordi-
nates (x,y,z) and the velocity components (u,v,w) are
also expressed as (x1,x2,x3) and (u1,u2,u3), respectively.
The initial Reynolds and Froude numbers are defined
by Re0 = U∗

0 L∗
0/ν∗ and Fr0 = U∗

0 /(N
∗L∗

0), where N∗ =√
−(g∗/ρ∗

0 )(dρ̄∗/dz∗) is the Brunt-Väisälä frequency (g∗:
gravitational acceleration, ρ∗

0 : representative density of the
fluid). In the present study, we investigate the Froude num-
ber dependence of the flow (Fr0 = 0.3,1 and 10), keeping
the Reynolds number constant (Re0 = 50).

The governing equations are solved by the Fourier
spectral method under the periodic boundary condition with
a period of 4π . The aliasing errors are removed by the 3/2-
rule. We used 40963 grid points when 0 ≤ t ≤ 6 and 20483

points when 6 ≤ t ≤ 30 to resolve the smallest scale of den-
sity perturbation. Indeed, kmax/kB ≥ 1.55 is satisfied during
the simulation, where kmax is the maximum wavenumber.
The non-linear terms and the buoyancy term are developed
in time by the 4th-order Runge-Kutta method, while the dif-
fusive terms are analytically time-integrated using the inte-
grating factor.

The numerical simulation is executed using up to 1024
nodes of NEC SX-ACE in the Cyberscience Center of To-
hoku University and the Earth Simulator Center of Japan
Agency of Marine-Earth Science and Technology (JAM-
STEC).
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Figure 1. The temporal development of the kinetic and po-
tential energies (KE and PE).

RESULTS
We first show in figure 1 the temporal development

of the kinetic and potential energies, which are defined
by KE = u2

i /2 and PE = ρ ′2/(2Fr2
0), respectively, where

the overline denotes the spatial average. The decay of
the kinetic energy becomes slower for a smaller Froude
number (stronger stratification), in agreement with Bartello
and Tobias (2013). The initial growth of the potential
energy is caused by the vertical density flux converting
the kinetic energy into the potential energy. The time at
which the potential energy becomes maximum is delayed
for a larger Froude number (weaker stratification) since the
Brunt-Väisälä period becomes longer and the energy con-
version occurs more slowly. Indeed, the maximum potential
energy occurs at t ∼ TBV /4, where the Brunt-Väisälä period
TBV = 2πFr0 in the non-dimensional form.

Figure 2(a) shows the temporal development of the
Ozmidov and Kolmogorov wavenumbers, where the Ozmi-
dov wavenumber is defined in dimensional form by k∗O =

(N∗3/ε∗K)
1/2. The temporal variation of the Kolmogorov

wavenumber hardly depends on the Froude number since
the kinetic energy dissipation rate is insensitive to the strat-
ification (cf. Bartello and Tobias, 2013). Meanwhile, as is
easily anticipated by definition, the Ozmidov wavenumber
becomes larger for a larger Froude number. The Ozmidov
wavenumber increases with time, indicating that the buoy-
ancy effect gradually prevails in smaller-scale motions as
time passes. Since the Kolmogorov wavenumber is almost
insensitive to the Froude number, the agreement between
the Kolmogorov and Ozmidov wavenumbers is delayed for
a larger Froude number. Indeed, they match at t = 1.4 for
Fr0 = 0.3 and t = 7.2 for Fr0 = 1, and would match later
than t = 30 for Fr0 = 10.

Figure 2(b) shows the Froude number dependence of
the buoyancy Reynolds number, which is defined by Reb =
ε∗K/(ν

∗N∗2). The buoyancy Reynolds number is a measure
of how the viscous dissipative scale is separated from the
buoyancy affected scale since it is also expressed as Reb =
(k∗K/k∗O)

4/3. For Fr0 = 10, the buoyancy Reynolds number
is initially order of 103 and larger than unity even at t =
30, indicating that the flow is not significantly affected by
the buoyancy. On the other hand, the buoyancy Reynolds
number for Fr0 = 0.3 falls below unity soon (t = 1.4), so
that the flow would be mostly dominated by the buoyancy
during the simulated time.
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Figure 2. The temporal development of (a) the Ozmidov
and Kolmogorov wavenumbers (kO and kK), and (b) the
buoyancy Reynolds number (Reb).

Results for moderate stratification
We next focus on the moderately stratified case of

Fr0 = 1, and describe the temporal variation of the poten-
tial energy distribution both in physical and wavenumber
spaces.

Figure 3 illustrates the spatial distribution of the po-
tential energy at two different times (t = 4 and 20). At an
early time of t = 4 (figure 3a), the distribution appears to
be isotropic and unaffected by stratification since the Ozmi-
dov wavenumber (kO = 3.9) is smaller than the Kolmogorov
wavenumber (kK = 9.5) and the buoyancy Reynolds num-
ber exceeds unity. Much later at t = 20 (figure 3b), even the
smallest scale of fluid motion is affected by stratification
since the Ozmidov wavenumber (kO = 22) is far above the
Kolmogorov wavenumber (kK = 4). Then, the large-scale
structures of the potential energy show pancake structures
whose horizontal and vertical dimensions are comparable to
the integral scales (LH = 2.2 and LV = 1.2). Here, the hor-
izontal and vertical integral scales are defined respectively
by

LH =
π
∫

dky
∫

dkz|û(0,ky,kz)|2

u2
, (4)

and

LV =
π
∫

dkx
∫

dky|ŵ(kx,ky,0)|2

w2
, (5)

(e.g. Bradshaw 1971), where kkk = (kx,ky,kz) is the wave

(a)

(b)

(c)

Figure 3. Spatial distributions of the potential energy with
Fr0 = 1 at (a) t = 4 and (b) t = 20. The isosurfaces of
ρ ′2/(2Fr2

0) = 8PE. (c) Close-up view of the red rectangular
region in panel (b).

vector, and ˆ denotes the Fourier component. The close-up
view of each pancake structure (figure 3c) reveals that it is
a cloud of vertically-thin sheets and streaks.

We present in figure 4(a) the time development of the
radial spectrum of the potential energy, which is defined by

EP(k) = ∑
|
√

k2
x+k2

y+k2
z−k|<kmin/2

1
2Fr2

0
|ρ̂ ′(kx,ky,kz)|2 ·

1
kmin

,

(6)
where kmin = 0.5 since the computational domain possesses
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the periodicity of 4π . The variation of the Kolmogorov,
Ozmidov and Batchelor wavenumbers are also indicated in
the figure, for the same period of 4 ≤ t ≤ 20.

Figure 4(a) shows that the density fluctuations ini-
tially (t = 4) constitute a k−1 spectrum in the viscous-
convective subrange (kK < k < kB). This agrees with the
Batchelor’s prediction for a high Schmidt-number passive
scalar (Sc ≫ 1) in isotropic turbulence, since the Ozmidov
wavenumber is smaller than the Kolmogorov wavenumber
and the buoyancy effect is negligible above the Kolmogorov
wavenumber. As time proceeds, the Ozmidov wavenumber
increases while the Kolmogorov wavenumber decreases,
and the fluid motion is mostly affected by buoyancy af-
ter kO = kK is realised at t = 7.2. At the same time, the
potential-energy spectrum changes its form and begins to
bend near k = kK , and the spectrum becomes steep (∝ k−3)
for low wavenumbers (k ≲ kK), while it becomes flat (∝ k0)
for high wavenumbers (kK ≲ k ≲ kB).

When the spectrum is multiplied by the wavenumber k
and plotted against logk, the area below the curve of kEP(k)
indicates the amount of potential energy. Figure 4(b) shows
initially (at t = 4) a plateau corresponding to the k−1 spec-
trum in the viscous-convective subrange, but the potential
energy near the Kolmogorov scale (k ∼ 6) subsequently de-
creases, leaving two peaks at low and high wavenumbers.
The low-wavenumber peak at k ∼ 1.5 corresponds to the
pancakes or clouds observed in figure 3(b), and the high-
wavenumber peak at k ∼ 40 would correspond to the small-
scale structures constituting those clouds (figure 3c).

The clouds of small-scale structures (figure 3b,c) were
not observed in the numerical simulations for Schmidt num-
bers up to 70 (Okino and Hanazaki, 2019) since the dif-
ference between the Batchelor wavenumber and the Kol-
mogorov wavenumber was too small to observe the separa-
tion between the two peaks in figure 4(b).

To investigate the origin of the significant decrease
of potential energy near the Kolmogorov wavenumber, we
consider the budget for the potential-energy spectrum, i.e.

∂EP(k)
∂ t

=−DP(k)+Cρ ′w(k)+TP(k), (7)

where DP(k) is the potential-energy dissipation spectrum,
Cρ ′w(k) is the co-spectrum of the vertical density flux re-
sponsible for the exchange between the kinetic and poten-
tial energies and TP(k) is the potential-energy transfer spec-
trum.

All the terms on the right-hand side of (7) in their pre-
multiplied form are plotted in figure 5 using the values at
t = 8, i.e. when the potential energy near the Kolmogorov
wavenumber has decreased significantly (cf. figure 4b).
The potential-energy dissipation −kDP(k) has a negative
peak near the Batchelor wavenumber (k ∼ 102), but approx-
imately balances with the positive energy-transfer spectrum
kTP(k). On the other hand, the co-spectrum of the vertical
density flux kCρ ′w(k) is persistently negative and counter-
gradient near and above the Kolmogorov wavenumber (k ≳
kK ∼ 7), while it oscillates in time and changes sign at low
wavenumbers. This phenomenon has been observed in pre-
vious studies for high-Sc scalars (Komori and Nagata, 1996;
Hanazaki and Hunt, 1996; Gerz and Yamazaki, 1993; Okino
and Hanazaki, 2019), and the present results show that the
persistent counter-gradient flux significantly reduces the po-
tential energy near the Kolmogorov wavenumber.
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Figure 4. (a) Temporal variation of the potential energy
spectrum EP(k) for Fr0 = 1. Arrows indicate the tempo-
ral variation of the Kolmogorov, Ozmidov and Batchelor
wavenumbers from t = 4 to t = 20. (b) Pre-multiplied spec-
trum of the potential energy, k×EP(k), for Fr0 = 1.
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Figure 5. Spectral budget of the potential energy for Fr0 =

1 at t = 8. The arrows show the Kolmogorov, Ozmidov, and
Batchelor wavenumbers from the left.

Froude number dependence
We now examine the Froude number dependence of

the potential-energy distribution. Figure 6 shows the spa-
tial distributions of the potential energy for Fr0 = 10 and
0.3 at t = 20. Under weak stratification of Fr0 = 10,
the Kolmogorov wavenumber is larger than the Ozmidov
wavenumber and the buoyancy Reynolds number is larger
than unity even in the final period of the simulation (fig-
ure 2a,b). Thus, the density perturbation would not be af-
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(a)

(b)

Figure 6. Spatial distributions of the potential energy with
(a) Fr0 = 10 and (b) Fr0 = 0.3 at t = 20. The isosurfaces of
(a) ρ ′2/(2Fr2

0) = 6PE and (b) ρ ′2/(2Fr2
0) = PE/3.

fected largely by the buoyancy, and behave like a passive
scalar. Indeed, as shown in figure 6(a), sheet-like structures
of potential energy distribute isotropically (cf. Brethouwer,
Hunt and Niewstadt, 2003). The distribution is also similar
to figure 3(a), where the initial Froude number is smaller
(Fr0 = 1) and the time is much earlier (t = 4), but the buoy-
ancy Reynolds number (∼ 3 > 1) is almost the same (figure
2b). Under strong stratification of Fr0 = 0.3, the buoyancy
Reynolds number at t = 20 is much smaller (∼ 10−2). Then,
small-scale fluctuations are absent and only the large-scale
pancake structures with horizontal wrinkles are observed.
Okino and Hanazaki (2019) explained that such a struc-
ture is generated by the vertically sheared horizontal flow
at the Kolmogorov scale after the buoyancy Reynolds num-
ber falls below unity.

We finally show the temporal variation of the poten-
tial energy spectrum for Fr0 = 10 and 0.3 in figure 7. For
the case of Fr0 = 10, the Ozmidov wavenumber is always
larger than the Kolmogorov wavenumber, so that the buoy-
ancy does not affect small-scale structures and Batchelor’s
k−1 law has been observed during the simulated time (figure
6a). The pre-multiplied spectrum in figure 7(c) shows that
density perturbations as small as the Kolmogorov scale pos-

sess a large fraction of the potential energy and the plateau
corresponding to the k−1 law is sustained for a long time. In
contrast, the potential energy spectrum for Fr0 = 0.3 does
not have a constant slope of −1 since the buoyancy domi-
nates small-scale motion from a very early time (kK < kO
at t ≳ 2. cf. figure 2a). Similar to the moderately stratified
case (Fr0 = 1), the potential energy spectrum bends near
the Kolmogorov wavenumber (figure 7b) because the ver-
tical density flux reduces the potential energy by convert-
ing it into the kinetic energy. The pre-multiplied spectrum
in figure 7(d) appears quite different from that for Fr0 = 1
(figure 4b) in that the pre-multiplied spectrum for Fr0 = 0.3
has a single peak at k ∼ 2 and lacks the second peak at the
sub-Kolmogorov scale that was observed for Fr0 = 1. This
is because the energy conversion through the vertical den-
sity flux occurs sooner than the initial potential energy cas-
cade down to the Batchelor wavenumber completes. Thus,
small-scale fluctuations of the potential energy are absent
for Fr0 = 0.3 and only the large-scale pancake structures
were observed in figure 6(b).

CONCLUSIONS
We have investigated decaying turbulence in a salt-

stratified fluid (Sc = 700) for three Froude numbers (Fr0 =
0.3,1 and 10) using the direct numerical simulation.

When the stratification effect is sufficiently weak and
the Ozmidov scale is far above the Kolmogorov scale (i.e.
the buoyancy Reynolds number is large), the flow is not
largely affected by the buoyancy. Then, the density pertur-
bation behaves like a passive scalar convected by isotropic
turbulence and the corresponding potential energy spectrum
exhibits Batchelor’s k−1 law in the viscous-convective sub-
range (kK ≲ k ≲ kB).

In contrast, when the stratification effect is strong (i.e.
the buoyancy Reynolds number is smaller than unity), per-
sistently negative (counter-gradient) vertical density flux
converts the potential energy near the Kolmogorov scale
into the kinetic energy. Then, the spatial distribution of po-
tential energy shows large clouds of small structures, and
the potential energy has a flat spectrum rather than the k−1

law. However, if the buoyancy effect reaches down to the
Kolmogorov scale sooner than the initial potential-energy
cascade completes, only the large-scale pancake structures
of potential energy are observed and small-scale fluctua-
tions are absent.
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