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ABSTRACT
From the viewpoint of efficient energy use, it is nec-

essary to implement the flow enhancing heat transfer while
suppressing flow resistance by momentum transfer. How-
ever, it is generally difficult to realize dissimilar heat trans-
fer enhancement, i.e., more heat transfer and less momen-
tum transfer, owing to strong similarity between heat and
momentum transfer. Recent studies have suggested that the
vortex which has the same sign of vorticity as that of the
background shear flow (the cyclonic vortex) is effective in
dissimilar heat transfer enhancement. But, it has not yet
been known why the cyclonic vortex achieves dissimilar
heat transfer, or if another type of vortices would also lead
to dissimilarity. In order to tackle these problems, we intro-
duce directly a vortex tube into laminar plane Couette flow
under various conditions and investigate heat and momen-
tum transfer by these vortices. As a consequence, the phys-
ical mechanism of dissimilarity emergence has been eluci-
dated by interpreting the distribution of streamwise pres-
sure gradient and the resulting difference between tempera-
ture and velocity in terms of an exact solution to the Euler
equation and the Lagrangian observation of the streamwise
pressure gradient and the resulting temperature-velocity dif-
ference, respectively.

1 INTRODUCTION
Heat exchangers are widely used for engineering ap-

plications, such as personal computers, air conditioners, au-
tomobiles, etc. Hence it is definitely beneficial for us to
improve the performance of heat exchangers. In order to
achieve that, it suffices to realize heat transfer enhance-
ment which is superior to the flow resistance by momentum
transfer. However, it is generally difficult to realize dissim-
ilar heat transfer enhancement, i.e., more heat transfer and
less momentum transfer, owing to strong similarity between
heat and momentum transfer (Reynolds (1874); Chilton &

Colburn (1934)), i.e., if one is increased, the other is also
increased. This similarity stems from the existence of the
similar terms in the governing equations of the streamwise
velocity and temperature. Nevertheless, since there is a dif-
ference in the pressure term between these two governing
equations, weak dissimilarity is inherent even if the ratio of
the kinematic viscosity coefficient and the thermal diffusion
coefficient (the Prandtl number) is unity. Hence, we can say
that although it is difficult to realize dissimilar heat trans-
fer enhancement, it might be possible as a consequence of
ingenious contrivance.

In several prior studies, attempts were made to achieve
dissimilar heat transfer enhancement. By experimentally
examining the variation of heat and momentum transfer
caused by installing a rectangular lib in the channel flow,
Suzuki et al. (1991) showed that the vortex with the same
sign of the spanwise vorticity as the background shear flow
(the cyclonic vortex) is effective in dissimilar heat transfer
enhancement. Katoh et al. (2012) investigated the tubular
vortices in turbulent channel flow, and found that they often
incline from the streamwise direction in the spanwise direc-
tion so that their spanwise vorticity may exhibit the same
sign as the mean shear, i.e. cyclonic vortices, and subse-
quently they contribute to dissimilarity. The existence of the
cyclonic vortices was also confirmed in the flow field real-
izing large dissimilarity by implementing blowing and suc-
tion on the walls in channel flow (Yamamoto et al. (2013);
Kasagi et al. (2012)). More recently, by using a variational
method Motoki et al. (2018) reported that numerous tilted
vortices which have the opposite sign of vorticity to the
background shear flow, i.e. anti-cyclonic vortices, exist in
the incompressible flow field maximizing heat transfer al-
though the obtained field does not satisfy the Navier–Stokes
equation.

From the previous studies mentioned above, the cy-
clonic vortices may be beneficial for dissimilar heat transfer
enhancement; however, the following questions arise. Why
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Figure 1. Flow configuration. The green circles denote the
streamlines of the introduced vortex.

can the cyclonic vortex achieve dissimilar heat transfer en-
hancement? Can the anti-cyclonic vortex also lead to dis-
similarity? If so, why?

In this study, therefore, we try to elucidate the physical
mechanism of dissimilarity emergence. In order to achieve
this purpose, numerical simulation of the transfer process of
heat and momentum is carried out for the flow field in which
a vortex tube is introduced under various conditions, and
the influence of the vortex on heat and momentum transfer
is investigated.

Since we pay attention only to dissimilarity due to vor-
tices, the boundary conditions of the streamwise velocity
and temperature are consistent and the Prandtl number is
set to unity. In order to simplify the dissimilarity mecha-
nism to be discussed, we suppose that the single vortex is
straight and uniform in its axial direction so as not to con-
sider the self- or mutual-interaction of the vortices. For the
same reason, the Reynolds number is assumed to be in the
range of laminar flow where any vortices will not appear
autonomously.

2 FORMULATION
2.1 Flow configuration and governing equa-

tions
We consider heat and momentum transfer enhance-

ment by the introduction of a straight vortex tube in plane
Couette flow and an associated thermal conduction state,
which is one of the simplest configurations in the sense that
internal heat source (corresponding to mean pressure gradi-
ent) is not necessary for consistency of momentum and heat
transfer. Figure 1 shows the flow configuration. The flow is
driven by two parallel plates of distance H, moving in the
opposite directions at a constant speed Uw/2. The upper
(or lower) wall surface is kept at higher (or lower) constant
temperature +Tw/2 (or −Tw/2). The coordinates x, y and z
are taken in the streamwise, the wall-normal and the span-
wise directions, respectively. The upper (or lower) wall is
located at y = +H/2 (or y = −H/2). A periodic bound-
ary condition is imposed on the x-direction and its period is
taken as πH.

The working fluid is Newtonian, and the components
of velocity uuu in the streamwise, the wall-normal and the
spanwise directions are u, v and w, respectively. The tem-
perature T is assumed to be a passive scalar and follows the
advection-diffusion equation, because we target situations
where the Eckert number is small enough.

The nondimensionalized governing equations of the
velocity and temperature, and the nondimensionalized
boundary conditions by the wall separation H, the wall
speed difference Uw and the wall temperature difference Tw

can be written as

∇∗ ·uuu∗ = 0, (1)
∂uuu∗

∂ t∗
+uuu∗ ·∇∗uuu∗ = −∇∗p∗+

1
Re

∆∗uuu∗, (2)

∂T ∗

∂ t∗
+uuu∗ ·∇∗T ∗ =

1
RePr

∆∗T ∗, (3)

uuu∗
(

y∗ =±1
2

)
=

(
±1

2
,0,0

)
, (4)

T ∗
(

y∗ =±1
2

)
= ±1

2
, (5)

[u∗,v∗,w∗] (x∗,y∗) = [u∗,v∗,w∗](x∗+π,y∗), (6)

T ∗(x∗,y∗) = T ∗(x∗+π,y∗), (7)

where t is the time and p is the pressure, and the superscript
∗ means the dimensionless physical quantity. The Reynolds
number is defined as Re =UwH/ν , and the Prandtl number
Pr = ν/α is set to unity, where ρ is the mass density of
the fluid, ν is the kinematic viscosity coefficient and α is
the thermal diffusion coefficient. Hereafter, the superscript
∗ is dropped, and all the physical quantities are described as
dimensionless quantities unless otherwise noted.

We introduce single axially uniform vortex into Cou-
ette flow so as not to consider the self- or mutual-interaction
of the vortices. Using the toroidal/poloidal decomposition,
the circumferential velocity of the vortex to be introduced
at t = 0 is given by

uθ = A
r

R2 exp
(
− r2

2R2

)
× [filter], (8)

[filter] =

{
1− sech500 (y− 1

2
) (

0 < y ≤+ 1
2
)

1− sech500 (y+ 1
2
) (

− 1
2 ≤ y ≤ 0

)
.

(9)

In order to satisfy the wall boundary condition (4), the filter
(9) is applied. A is the amplitude of the circumferential ve-
locity, and R is the vortex radius. The center of the vortex is
located at (x,y) = (cx,cy). r is the distance from the vortex
axis, i.e. r2 = (x− cx)

2 +(y− cy)
2.

We define the cyclonic (or anti-cyclonic) vortex as a
vortex which has same (or opposite) sign of vorticity as that
of the background shear flow. In Figure 1, the rotation di-
rection of the cyclonic (or anti-cyclonic) vortex is clockwise
(uθ < 0) (or counterclockwise (uθ > 0)).

2.2 Dissimilarity indicator
As an indicator of dissimilarity,

D = (St − c f )Re (10)

is used.
The wall-average Stanton number and the friction co-

efficient are defined, respectively, by

St =
1

2RePr

⟨
∂T
∂y

∣∣∣∣
y=−1/2

+
∂T
∂y

∣∣∣∣
y=+1/2

⟩
x

, (11)

c f =
1

2Re

⟨
∂U
∂y

∣∣∣∣
y=−1/2

+
∂U
∂y

∣∣∣∣
y=+1/2

⟩
x

, (12)
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Table 1. Parameter values in numerical simulations.

Re 200, 400, 600

A ±0.05, ±0.1, ±0.2

R 0.025, 0.05, 0.1

cy 0, 0.15 0.3

where

⟨( · )⟩x =
1
π

∫ π

0
( · ) dx. (13)

They represent the dimensionless intensity of heat transfer
and momentum transfer, respectively. Note that they take a
value of Re in laminar flow (without the introduced vortex).

In the case of D > 0, heat transfer is larger than mo-
mentum transfer, implying dissimilar heat transfer enhance-
ment. Dissimilar heat transfer enhancement in this paper
leads to good dissimilarity in an engineering sense. On the
other hand, in the case of D< 0, heat transfer is smaller than
momentum transfer, leading to bad dissimilarity. Hereafter,
‘dissimilarity’ simply implies the good dissimilarity.

2.3 Numerical method
Eqs. (1)-(7) are solved by direct numerical simulations

(DNS), using the second-order central finite-difference
method in space and the Huen method in time. The pres-
sure p and the flow velocity uuu are coupled by the Maker
And Cell (MAC) method. The uniform staggered grids are
employed with the number of grid points being 256× 257
in the x- and y-directions. It has been confirmed that even
if the number of the gird points is doubled (512×513), the
simulation results are consistent with the ones shown later.

The initial velocity field at t = 0 is given by the in-
troduction of the vortex (9) in laminar plane Couette flow
(uuu = yeeex +uθ eeeθ ), while the initial temperature field at t = 0
is in a thermal conductive state (T = y), where eeex and eeeθ
are unit vectors in the streamwise and circumferential di-
rection, respectively (see Figure 1). The parameters of this
system are the Reynolds number Re, the amplitude of the
circumferential velocity A, the position cy and the radius
R of the vortex. The values of the four flow parameters
are chosen as shown in Table 1. Note that Reynolds num-
ber is assumed to be in the range of laminar flow. Posi-
tive (or negative) A means the circumferential velocity of
the anti-cyclonic (or cyclonic) case. DNS is performed
for the vortex introduction, starting from the initial condi-
tions, to compute subsequent momentum and heat transfer
until when the difference between the total kinetic energy
E = 1

2π
∫∫ (

u2 + v2 +w2)dxdy and that in laminar Couette
flow without the introduced vortex 1

2 is not greater than
10−9.

3 DISSIMILARITY EMERGENCE
We will confirm whether cyclonic and anti-cyclonic

vortices achieve more significant dissimilar heat transfer en-
hancement. In Figure 2, D of the cyclonic or anti-cyclonic
vortex is shown as a function of the vortex Reynolds num-
ber ReΓ = ωz,maxR2Re/2 = ARe , where (·) represents the
time average over t = 0–tend. Note that the vortex Reynolds
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Figure 2. Dependence on the vortex Reynolds number
of dissimilarity in the cyclonic (upper) and anti-cyclonic
(lower) cases for the parameter values shown in Table 1 cy =

0. Triangle, square and circle symbols represent Re = 200,
400 and 600, respectively. Green, blue and red symbols
represent R = 0.025, 0.05 and 0.1, respectively. The in-
set denotes the magnification of the small vortex Reynolds
number range 0 ≤ ReΓ ≤ 25.

number is often used as dimensionless strength of the vor-
tex. ωz,max = 2A/R2 is the maximum value of the compo-
nent of the vorticity at the initial time t = 0.

Although there are some exceptions when the vortex
Reynolds number ReΓ is small, i.e., the vortex is weak in
the anti-cyclonic case (see §5), the vortex almost tends to
realize dissimilarity.

Figure 2 is shown only for cy = 0, but the same ten-
dency has been observed even if cy = 0.15 or 0.3.

4 PHYSICAL MECHANISM OF DISSIMILAR-
ITY EMERGENCE
As was mentioned in §3, the DNS data are inspected

for the ‘long-term’ averaged from the initial time t = 0 to the
eventual time tend, at which the introduced vortex is suffi-
ciently attenuated. Hence any short-term events, e.g., emer-
gence of transient structures in the instantaneous velocity
and temperature fields stemming from the introduction of
the vortex, must disappear from the averaged fields. Here,
we shall discuss the ‘universal’ factors that contribute to the
dissimilarity appearing in the long-term averaged field.

4.1 Pressure gradient
The trigger of dissimilarity should be the streamwise

pressure gradient ∂ p/∂x, as mentioned in §1. The distri-
bution of ∂ p/∂x obtained from the DNS data is shown in
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Figure 3. Spatial distribution of the time-averaged stream-
wise pressure gradient for Re= 400, |A|= 0.2,R= 0.1,cy =

0. The black curves are the time-averaged streamlines. The
cases of the cyclonic (anti-cyclonic) vortex are in the upper
(lower) panel.

Figure 3. The pressure field of the cyclonic vortex (up-
per) is distributed such that the pressure decreases toward
the vortex center near the vortex. On the other hand, that
of the anti-cyclonic vortex (lower) is distributed such that
the pressure decreases toward the center near the vortex but
increases toward the center in the far region of the vortex.
There is a significant difference in the streamwise pressure
gradient between the cyclonic and anti-cyclonic cases ex-
pect for the central region of the vortices.

Here, we try to interpret theoretically the distribution
of ∂ p/∂x around the cyclonic or the anti-cyclonic vortex
(Figure 3). Since it is difficult to target the pressure gradi-
ent of the unsteady viscous flow field introduced with vor-
tex, a steady inviscid two-dimensional flow field as shown
below is considered: The vortex tube that has the circum-
ferential velocity A/r, that is vortex filament, is introduced
into a constant shear flow (u = y) in an infinite region with
no boundary. A is the amplitude of the circumferential ve-
locity, which means the cyclonic (or anti-cyclonic) vortex
when it is negative (or positive).

The pressure field in this simple system was deter-
mined by Imai (1984) using complex potential theory. In
this inviscid flow the pressure is rigorously given by

p =−1
2

A2

r2 +A
y2

r2 −A lnr. (14)

and thus the streamwise pressure gradient is

∂ p
∂x

=

(
A2 −2Ay2

r4 − A
r2

)
x. (15)

If r is smaller, the first term of Eq. (15)
(A2 −2Ay2)x/r4 is the more dominant. Hence regardless
of the cyclonic and anti-cyclonic case, in the central region
of the vortex, it can be considered that ∂ p/∂x < 0 on the
left side (x < 0) and ∂ p/∂x > 0 on the right side (x > 0) in
Figure 3. On the other hand, if r is larger, the second term
−Ax/r2 is the more dominant. Therefore, in the cyclonic
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Figure 4. Spatial distribution of the time-averaged differ-
ence between the temperature and the streamwise velocity
for Re = 400, |A| = 0.2,R = 0.1,cy = 0. The black curves
are the time-averaged streamlines. The cases of the cyclonic
(anti-cyclonic) vortex is in the upper (lower) panel.

(or anti-cyclonic) vortex, ∂ p/∂x can be considered to take
a negative (or positive) value on the left side (x < 0) (or the
right side (x > 0)). It should be noted that the significant
difference observed in the far region of the vortices is not
dependent of the detailed vortex structure.

4.2 Difference between the temperature and
the streamwise velocity

This pressure gradient leads to distinct distribution of
the temperature and the streamwise velocity, and so we next
see the distribution of their difference d = T −u (Figure 4).
Larger and smaller values of d are observed in the upper and
lower regions of the cyclonic vortex (upper), while those are
observed in the right and left regions of the anti-cyclonic
vortex (lower).

Next, we also try to interpret the distribution of their
difference d. The governing equation of d is obtained from
the difference of the x-component of Eq. (2) from Eq. (3),
as

Dd
Dt

=
∂ p
∂x

+
1

Re
∆d. (16)

From Eq. (16), it can be seen that d is related to ∂ p/∂x
via the Lagrangian time derivative. The trajectory of fluid
particles, that is the streakline, passes through the central
region of the cyclonic vortex, while it does not pass through
that of the anti-cyclonic vortex (cf. Figure 3).

Following the motion of the fluid particle along the up-
per streaklines in the cyclonic case, we can see the change
of d (Figure 5 left). Since ∂ p/∂x is not significant in the
left most region of the vortex, d would be almost null in
the region I. When the fluid particle reaches the region II of
∂ p/∂x < 0, d gradually decreases to be negative. When it
reaches the region III of ∂ p/∂x > 0, d increases to eventu-
ally return to zero in the region I′.

In the above consideration, only the influence of the
first term on the right-hand side of Eq. (16) is taken into
account. Now we consider the second term as well. Since
∆d represents the diffusion of d, its effect can be interpreted

4
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Figure 5. The upper (or left) trajectory of fluid parti-
cles (circular symbols) is shown in the cyclonic (or anti-
cyclonic) vortex in the left (or right) panel. The color of the
fluid particles represents the value of d, which decreases
from zero to a negative value in order of black, violet, blue,
light blue and increases from zero to a positive value in or-
der of black, brown, red, yellow. The green and black ar-
rows represent the streamlines of the vortex and the streak-
lines of the total flow, respectively. Red (or blue) area is
positive (or negative) streamwise pressure gradient area.

as the ‘resilience’ about d = 0. Therefore, ∆d in the region
II should interfere with the reduction of d by ∂ p/∂x < 0.
In other words, ∆d has counter action against ∂ p/∂x < 0.
Note that it is not the case in the region III where ∂ p/∂x> 0
while still d < 0. As a result, the rate of change in d is more
significant downstream of the vortex (the region III) than
upstream (the region II), implying that d can be restored
faster to zero downstream of the vortex. It turns out that in
the upper (or lower) part of the cyclonic vortex the region
of d < 0 (or d > 0) should be slightly biased upstream, as
shown in Figure 4 (upper).

Much simpler argument suggests that in the anti-
cyclonic case (Figure 5 right), the region of d > 0 (or d < 0)
appears on the left (or right) of the vortex where ∂ p/∂x > 0
(or ∂ p/∂x < 0), as shown in Figure 4 (lower).

4.3 Difference between the turbulent heat
flux and the Reynolds stress

Dissimilar heat transfer enhancement can be quantified
as D=(St−c f )Re. Mutiplying Eq. (16) by the wall-normal
coordinate y and then integrating the product over the whole
domain, D is given by

D =
Re
2

(⟨
y

∂d
∂ t

⟩
xy
−⟨dv⟩xy

)
, (17)

where

⟨( · )⟩xy =
1
π

∫ π

0

∫ + 1
2

− 1
2

( · ) dxdy. (18)

If we consider the ‘long-term’ average D, the contribution
from the first integrand ⟨y∂d/∂ t⟩xy in Eq. (17) can be ne-
glected (see §5), suggesting that the dissimilarity D can be
expressed by the volume integral of the difference between
the turbulent heat flux −T v and the Reynolds stress −uv,
that is −dv. The distribution of −dv obtained from the DNS
data is shown in Figure 6. It follows from this figure that
the region of −dv > 0 is much larger than that of −dv < 0
in both the cyclonic and the anti-cyclonic cases, leading to
dissimilarity.
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Figure 6. Spatial distribution of the time-averaged differ-
ence between the turbulent heat flux and the Reynolds stress
for Re = 400, |A| = 0.2,R = 0.1,cy = 0. The black curves
are the time-averaged streamlines. The cases of the cyclonic
(anti-cyclonic) vortex are in the upper (lower) panel.

Let us now interpret the distribution of −dv. Since the
wall-normal velocity v is induced by the vortex and the dis-
tribution of d is described as in Figure 4, −dv can be infered
as in Figure 6.

For the sake of simplicity of interpretation, this study
has been targeted to a laminar flow field. However, it
has been numerically confirmed that the proposed physi-
cal mechanism also holds for the cyclonic or anti-cyclonic
vortex introduced in turbulent plane Couette flow if the in-
troduced vortex dominates over the nearby vortices.

5 REMARKS ON THE WEAK ANTI-CYCLNIC
VORTEX
In this section, we interpret why the weak anti-cyclonic

vortices lead to bad dissimilarity in Figure 2. To go straight
to the point, due to the short decay time of the weak vortex,
the DNS data are ‘not’ inspected for the long-term averaged
over t = 0–tend, in other words ⟨y∂d/∂ t⟩xy in Eq. (17) can-
not be neglected.

The ReΓ -dependency on the magnitude relationship
between ⟨y∂d/∂ t⟩xy and −⟨dv⟩xy is shown in Figure 7.

From Figure 7, although the contribution of
⟨y∂d/∂ t⟩xy to dissimilarity is several times larger
than that of −⟨dv⟩xy in the weaker-vortex case of smaller
ReΓ , its magnitude relation reverses as the vortex becomes
stronger. In the case of the strong vortex, −⟨dv⟩xy is several
times to ten times larger than that of ⟨y∂d/∂ t⟩xy. It is
considered that the time required for the attenuation of the
vortex is related to these results.

Next, let us now consider ⟨y∂d/∂ t⟩xy. There is no dif-
ference between the temperature and streamwise velocity at
time tend, and so ⟨y∂d/∂ t⟩xy can be approximated as

⟨
y

∂d
∂ t

⟩
xy
≈−

⟨
y

d0

tend

⟩
xy

(19)

by using the initial condition, d0 = T0 − u0, where T0 and
u0 are the temperature and streamwise velocity at the initial
time, respectively.
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Figure 7. Dependence on the vortex Reynolds number of
⟨y∂d/∂ t⟩xy and −⟨dv⟩xy in the cyclonic (left) and the anti-
cyclonic (right) cases for the parameter values shown in Ta-
ble 1 cy = 0. Triangle, square and circle symbols represent
Re = 200, 400 and 600, respectively. Green, blue and red
symbols represent R = 0.025, 0.05 and 0.1, respectively.
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Figure 8. Conceptual diagram of difference between the
temperature field and the streamwise velocity field at initial
conditions in the cyclonic (left) and the anti-cyclonic (right)
cases.

Since the cyclonic vortex accelerates the streamwise
velocity, |u0| > |T0|, leading to −⟨yd0/tend⟩xy > 0. On
the other hand, since the anti-cyclonic vortex decelerates
it, |u0|< |T0|, leading to −⟨yd0/tend⟩xy < 0 (see Figure 8).

Therefore, owing to the contribution from ⟨y∂d/∂ t⟩xy
, which exerts a bad effect on the anti-cyclonic vortex in
the sense of dissimilar heat transfer enhancement, the anti-
cyclonic vortex realizes bad dissimilarity, when the vortex
is weak.

It should be noted that ⟨y∂d/∂ t⟩xy is not related to
the nature of the vortex but to initial or terminal condition.
Hence ⟨y∂d/∂ t⟩xy is not essential for ‘universal’ dissimilar-
ity.
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