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ABSTRACT 
Three-dimensional clusters of the streamwise velocity 
fluctuations (u) are explored in a view of the attached-eddy 
model, which provides a basis for understanding asymptotic 
behaviors at high-Reynolds-number wall turbulence in terms of 
coherent structures. We extract u clusters using the direct 
numerical simulation data of boundary layers subjected to 
adverse and zero pressure gradients. The identified structures are 
decomposed into attached self-similar, attached non-self-similar, 
detached self-similar and detached non-self-similar motions 
with respect to the minimum distance from the wall (ymin) and 
height (ly). The attached structures (ymin ≈ 0) are main enegy-
containing motions in which they carry approximately a half of 
the streamwise Reynolds stress and the Reynolds shear stress in 
the logarithmic and outer regions. The sizes of attached self-
similar structures scale with ly and their population density 
exhibits an inverse-scale distribution over 0.3δ < ly < 0.6δ (δ is 
the 99% boundary layer thickness). They also contirbute to the 
logarithmic variation of the streamwise Reynolds stress; i.e., 
these structures are universal wall motions in the logarithmic 
region. The tall attached structures with ly = Ο(δ) are non-self-
similar and responsible for the outer enhanced large scales under 
the adverse pressure gradient. They extend over 6δ in the 
stremwise direction and peneterate deeply into the near-wall 
region, reminiscent of superstructures or very-large-scale 
motions. Detached self-similar structures (ymin > 0 and ly > 
100ν/uτ) are geometrically isotropic and mainly populated in the 
outer region while the sizes of detached non-self-similar 
structures (ymin > 0 and ly

+ < 100) are scaled by Kolmogorov 
length scale. The present study can provide a new perspective on 
the analysis of turbulence structures in the view of the attached-
eddy model. 

 
INTRODUCTION 
Townsend (1976) deduced that energy-containing motions in the 
logarithmic region in wall-bounded turbulent flows are 
organized by a linear superposition of self-similar eddies that are 
attached to the wall. The size of each eddy is proportional to the 
distance from the wall (y). Townsend’s attached-eddy 
hypothesis predicts turbulence statistics in the logarithmic 
region in the sense of the structures: i.e., the logarithmic 
variation in the wall-parallel components of the Reynolds 

stresses. A typical feature of turbulent boundary layers (TBLs) 
subjected to adverse pressure gradients (APGs) is the 
enhancement of large-scale energy above the logarithmic region. 
A strong outer peak is observed in the streamwise Reynolds 
stress, which results from long-wavelength motions in energy 
spectra (Harun et al. 2013; Lee 2017; Yoon et al. 2018). The 
large-scale motions (LSMs) with Ο(δ) in the logarithmic region, 
where δ is the 99% boundary layer thickness, influence small-
scale motions through the amplitude modulation (Hutchins & 
Marusic 2007b; Hwang et al. 2016a,b) and are extended to the 
near-wall region as footprints (Hoyas & Jiménez 2006; Hutchins 
& Marusic 2007a). Recently, Hwang & Sung (2018) reported 
that the wall-attached structures of streamwise velocity 
fluctuations (u) are self-similar and contribute to the presence of 
the logarithmic layer in a zero pressure gradient (ZPG) TBL. 
Therefore, a research on Townsend’s attached-eddy hypothesis 
in APG TBLs is demanded through the wall-attached u 
structures to predict turbulence statistics influenced by 
strengthened LSMs. Although extensive studies of turbulence 
statistics in APG TBLs have been performed, much attention has 
not been paid to wall-attached structures despite its importance. 

The concept of attached eddies originates in the idea of 
Townsend (1976) who proposed a double-cone vortex model for 
the energy-containing motions in the logarithmic region whose 
sizes are proportional to y; attached to the wall. The wall-
attached structures are self-similar and are superimposed by 
eddies of different sizes with a constant characteristics velocity. 
In the logarithmic region, the Reynolds normal stresses can be 
expressed in the sense of Townsend’s attached-eddy hypothesis: 

2 2
1 1 2 2ln( ), ln( )uu u B A y ww u B A y         / /  / /  and vv   

2
3 ,u B /  where ,uu   vv   and ww   are the streamwise, 

wall-normal and spanwise components of the Reynolds stresses, 
respectively; uτ is the friction velocity, and A1, A2, B1, B2 and B3 
are constants. Perry & Chong (1982) extended Townsend’s 
attached-eddy hypothesis to their model, where a hierarchy of 
geometrically similar eddies is randomly distributed with a 
population density that is inversely proportional to their height, 

leading to the logarithmic variation of uu    and ,ww    where 

the superscript + denotes non-dimensionalization by the wall 
variables. Accordingly, attached-eddy models explain the 
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asymptotic behaviors of the turbulence statistics at high-
Reynolds-number turbulent flows in terms of coherent structures. 

After the 2000s, several studies of high-Reynolds-number 
wall-bounded turbulent flows (Reτ > Ο(104)) have been 
performed owing to the development of experimental equipment 
and computational power. Here, Reτ is the friction Reynolds 
number (= uτδ/ν, where ν is the kinematic viscosity). The role of 
wall-attached structures becomes significant as the increase in 
the Reynolds number. For instance, the logarithmic behavior in 

uu    is observed in ZPG TBLs at Reτ = Ο(104) (Hutchins et al. 

2009; Vallikivi et al. 2015; Baidya et al. 2017; Samie et al. 2018), 
atmospheric surface layer at Reτ = Ο(106) (Hutchins et al. 2012), 
turbulent pipe flow at Reτ = Ο(104–5) (Hultmark et al. 2012; Örlü 
et al. 2017) and turbulent channel flow at Reτ = 5200 (Lee & 
Moser 2015). 

Several models have been made by extending the model of 
Perry & Chong (1982). Perry et al. (1986) modified the inverse 
power-law in the population density of attached eddies by 
increasing the weighting for those with δ-height to accurately 
predict the velocity defect law and the energy distribution in 
low-wavenumber region. Despite the modification for large 
scales (Perry et al. 1986), a significant difference is observed 
between the experimental data and the model prediction in APG 
TBLs, especially in the Reynolds stresses in the outer region. 
Perry & Marusic (1995) recognized that another eddy with a 
different shape is needed for describing the Reynolds stresses in 
APG TBLs; the wall−wake attached-eddy model is proposed, 
comprised of wall-attached eddies (type A), larger detached 
eddies with Ο(δ) (type B) and smaller detached eddies including 
Kolmogorov scales (type C). Type-B eddies whose sizes are 
scaled with their height are mainly populated in the outer region, 
and they are modeled by trial and error. Studies of large scales 
in the outer region have proposed a new point of view on the 
larger detached structures (Smits et al. 2011). Details of the 
model are summarized in Marusic & Monty (2019). Hwang & 
Sung (2018) observed the inverse-power-law distribution of the 
wall-attached u structures and the outer peak in the population 
density, representing to the additional weighting for large scales 
as conjectured by Perry et al. (1986). Hence, it is necessary to 
decompose coherent u structures in the sense of the attached-
eddy models to understand the multiscale nature of wall 
turbulence. 

Recently, increasing attention has been paid to coherent 
structures in APG TBLs. The hairpin packets are more inclined 
away from the wall (Lee & Sung 2009) and the inclination angle 
increases as the increase in the strength of APG (Lee 2017). The 
long u streaks with Ο(δ) shrank, and the lengths of negative-u 
structures are widened in the outer region (Lee & Sung 2009). It 
would be difficult in previous studies to discriminate whether 
coherent structures are attached to the wall or detached from that. 
To overcome this limitation, vortical clusters (del Álamo et al. 
2006) and ejection and sweeps (Lozano-Durán et al. 2012) are 
extracted in DNS of channel flows. The identified structures are 
divided into wall-attached or wall-detached on the basis of the 
minimum distance from the wall. These wall-attached structures 
are self-similar and dominantly contribute turbulence statistics 
in the logarithmic region. Subsequently, Maciel et al. (2017a,b) 
analyzed individual cluster in APG TBLs by identifying ejection 
and sweeps. The self-similar wall-attached ejection and sweeps 
in APG TBLs carry 30−45% of uv   in the region of y/δ = 0.2 

~ 0.8, which is larger than that (25−40%) of ZPG TBL. Since 
self-similar structures in APG TBLs play a major role in the 
energy-containing motions, especially in the outer region, it is 

essential to analyze coherent u structures in APG TBLs by 
decomposing them in the sense of attached-eddy models. 

The objective of the present study is to explore three-
dimensional (3D) clusters of streamwise velocity fluctuations (u) 
by decomposing them in the view of Townsend’s attached-eddy 
hypothesis. Toward this end, direct numerical simulation (DNS) 
data of an APG and ZPG TBLs at Reτ ≈ 800 are used. The 
identified structures are classified into attached self-similar (type 
A, wall-scaling), attached non-self-similar (type B, outer-scaling) 
and self-similar/non-self-similar detached structures (viscous-
scaling) according to the height (ly) of the objects.  

 
NUMERICAL DETAILS 

In the present study, DNS dataset of an APG TBL (Yoon et 
al. 2018) is used. The continuity equation and the Navier− 
Stokes equations for incompressible flows are discretized using 
the fractional step method of Kim et al. (2002) to perform DNS 
of an APG TBL. The computational domain sizes are 1834δ0 × 
100δ0 × 130δ0 in the streamwise (x), wall-normal (y) and 
spanwise (z) directions, respectively. Here, δ0 is the inlet 
boundary layer thickness. The number of the grid is 10497 (x) × 
541 (y) × 1025 (z), and u, v and w indicate the streamwise, wall-
normal and spanwise velocity fluctuations, respectively. For 
comparison, DNS dataset of a ZPG TBL (Hwang & Sung 2017) 
is included. Details of the numerical procedure and the boundary 
conditions can be found in Yoon et al. (2018). The domain of 
interest (DoI) is chosen as 10δ (x) × 1.2δ (y) × 3δ (z). Figure 1 
shows the skin friction coefficient (Cf) and 3D iso-surface of u, 
where color contour indicates DoI. Details of the information of 
DoI are listed in table 1. 

 

 
Figure 1. Skin friction coefficient (Cf) and 3D iso-surface. Red 
line in Cf and color contours in iso-surface indicate DoI. 
 
Table 1. Information of DoI. The number in brackets indicates 
the center value at DoI (circle symbols in figure 1b,c). δx, δy and 
δz are the streamwise, wall-normal and spanwise sizes of DoI, 
respectively. 

 
 APG ZPG 
x/δ0 1318.6 ~ 1719.7 1509.5 ~ 1796.8
Reτ 680 ~ 873 (775) 769 ~ 884 (825)
Reθ 4050 ~ 5700 (4860) 2260 ~ 2654 (2457)
δ/δ0 32.75 ~ 46.05 (39.3) 23.32 ~ 27.42 (25.3)
δx/δ 10.2 11.4
δy/δ 1.2 1.1
δz/δ 3.31 3.95

 
The coherent structures of u are defined as the groups of 

connected points of ( ) ( )rmsu u yx  and ( ) ( ),rmsu u y x  

where α is the threshold and urms is the root mean square of u. To 
detect each u cluster, we use the connectivity of neighboring six-
orthogonal grids at a given node in Cartesian coordinates (del 
Álamo et al. 2006; Lozano-Durán et al. 2012; Hwang & Sung 
2018). By using this method, we can obtain the spatial 
information of individual u cluster. In order to choose α, a 
percolation diagram for the identified u clusters is shown in 
figure 2(a). The total number (N) and total volume (V) at certain 



11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11) 
Southampton, UK, July 30 to August 2, 2019 

 

3 

 

α are normalized by the maximum N (Nmax) and V (Vmax), 
respectively. The normalized volume (V/Vmax) increases as the 
decrease in α and in particular it significantly changes over 1.2 
< α < 1.7, indicating the presence of the percolation crisis. 
Within this region, the number ratio (N/Nmax) shows a peak at α 
= 1.5. The variations of V/Vmax and N/Nmax in the APG and ZPG 
TBLs collapse well, representing that the percolation behavior 
of u clusters is independent of the pressure gradient. In the 
present study, we select α = 1.5. 

Figure 2(b) represents the number of u clusters per unit wall-
parallel area (Axz = δxδz) as a function of ymin and ymax, which are 
the minimum and maximum distances from the wall:  

*
min max( , )/( ),xzn n y y mA  where n is the number of identified u 

clusters and m is the number of instantaneous flow fields used to 
detect u clusters. Here, color and line contours of n* denote the 
APG and ZPG, respectively. The u clusters with the volume 
larger than 303 wall units are only analyzed (del Álamo et al. 
2006). All u structures are divided into two groups; one is 

observed at min 0y   and the other is at min 0,y   indicating 

wall-attached and wall-detached structures, respectively. With 

the present criteria (i.e., min 0),y   we can analyze the wall-

normal variations of the turbulence statistics carried by these 
structures according to their height (ly) without any interpolation 
since ly = ymax.  

 

 
Figure 2. (a) Percolation diagram of detected u clusters. The total 
volume (V) and total number (N) of clusters vary with respect to 
α. (b) The number of u clusters per unit wall-parallel area (n*) 
with respect to ymin and ymax. 
 

We examine the contribution of the attached and detached u 

structures to .uu   Figure 3(a) exhibits the profiles of ,uu    

where the magnitude of uu    in the outer region is enhanced 

with a presence of a secondary peak near y+ = 240 in the APG 
TBL (red line). The streamwise Reynolds stresses carried by the 
attached and detached u structures are presented in figure 3(b), 
and they are defined as 
 

 
attached

attached
DoI

1
( ) ( ) ( )duu y u u

mV 
    x x x  (1) 

 
detached

detached
DoI

1
( ) ( ) ( )duu y u u

mV 
    x x x  (2) 

 
where Ωattached and Ωdetached are the domain of all constituent 
points of attached and detached structures, respectively, and VDoI 
(= δxδyδz) is the volume of DoI. The attached u structures account 

for over half of ,uu    whereas the detached u structures 

contribute to less than 13% of .uu    In addition, the shape of 

attacheduu    is similar to that of .uu    The wall-normal location 

of the inner peak of attacheduu    appears at y+ ≈ 15 and the outer 

peak of attacheduu    is observed at y+ = 210. In contrast to 

attached ,uu    the profiles of detacheduu    in the APG and ZPG TBLs 

collapse well up to y+ = 100. At y+ > 100, the magnitude of 

detacheduu    in the APG is larger than that in the ZPG and there is 

an outer peak at y/δ = 0.5, respectively. This result indicates that 
the detached structures within y+ < 100 do not affected by the 
pressure gradient. In the present study, the identified wall-

attached structures carry approximately half of ,uu    

representing that they are the main energy-containing motions. 
 

 
Figure 3. (a) uu    and (b) attacheduu    and detached .uu     

 
WALL-ATTACHED STRUCTURES 
In this section, we explore the identified attached structures by 
focusing on the eddy models proposed by Perry & Marusic 
(1995). They suggested three types of eddies. First, the type-A 
eddies are self-similar and the main energy-containing motions 
in the log region. In this sense, these eddies are universal 
structures in wall turbulence. The type-B eddies are 
characterized by the boundary layer thickness and responsible 
for the turbulence statistics in the outer region and the low-
wavenumber energy. Perry & Marusic (1995) conjectured the 
type-B eddies to model the outer peak of the streamwise 
Reynolds stress in APG because the predicted intensity only 
considering type-A eddies showed large discrepancies in the 
outer region. The type-C eddies are associated with the small-
scale motions. Although Perry & Marusic (1995) modeled that 
the type-B eddies are physically detached from the wall, recent 
studies showed that very-large-scale motions or superstructures 
are related to type-B eddies since these large-scale structures are 
characterized by the outer length scale (Hutchins & Marusic 
2007b). However, the LSMs penetrate into the near-wall region 
and impose their footprints (Hutchins & Marusic 2007a), 
indicating they can physically adhere to the wall. In the present 
work, we simply decompose the identified turbulence motions 
based on their height and presents the statistical properties of 
each motion satisfying the characteristics of type A, B or C 
motions described in the works of Perry and coworkers. 

We examine the population density of the attached u 

structures *
attached( )n  with respect to ly. Here, *

attachedn  is defined as 

the number of attached u structures per unit wall-parallel area 

with respect to ly: *
attached attached( ) ( )/( ),y y xzn l n l mA where nattached 

is a function of ly and m is the number of fields. Figure 4(a) 

shows the distributions of *
attached .n  In the APG (red), we can 

observe the region where *
attachedn  is inversely proportional to ly, 

reminiscent of a hierarchical length-scale distribution of the 
attached-eddy hypothesis. This region spans over ly/δ = 0.4 ~ 
0.58 (ly

+ = 310 ~ 450) as shown in the inset of figure 5(a); the 

best fit of the inverse power-law is * 1
attached 0.0026( / ) .yn l    

After the upper limit of the inverse power-law region (ly/δ ≈ 0.6), 
*
attachedn  increases and exhibits the peak at ly/δ = 0.92 (ly

+ = 710). 

This behavior indicates the relative dominance of tall attached 
structures with δ-length height (Perry et al. 1986). In addition, 
the magnitude of the peak in the APG is 1.3 times larger than 
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that in the ZPG, representing that the APG enhance large-scale 
structures in the outer region (Harun et al. 2013; Yoon et al. 
2018). In addition, the average volume of the attached u 
structures with ly = O(δ) is increased by 16% at that of the ZPG. 
This behavior could lead to a relatively lower population over 
0.3 < ly/δ < 0.6 in the APG. The enhanced population and volume 
of the tall attached structures have an essential role in the 
presence of the outer peaks observed in the Reynolds stresses of 
the APG. 

As discussed above, *
attachedn  clearly follows the population 

density of attached eddies conjectured by Perry & Chong (1982) 
and Perry et al. (1986). Thus, we decompose the wall-attached 
structures into two types based on the height of attached u 
structures: i.e., type A (100ν/uτ ≤ ly ≤ 0.6δ) and type B (ly > 0.6δ). 

 

 
Figure 4. *

attachedn  with respect to ly
+. Solid lines indicate 

* 1
attached ~ ( ) .yn l   The inset represents an enlarged view in the 

region ly/δ = 0.32 ~ 0.72 with a logarithmic abscissa. The inset 
shows the inverse power-law regions. 

 

 
Figure 5. Joint PDFs of (a) lx and ly and of (b) lz and ly. Color and 
line contours indicate APG and ZPG, respectively. Circle 
symbols are the mean lengths. A yellow solid line in (a) is 

0.74~x yl l  in the region from ly
+ = 100 to ly/δ = 0.6, and a blue 

solid line indicates lx ≈ 3.5δ. A yellow solid lines in (b) 
represents lz

+ = ly
+ at ly

+ > 100.  
 
We explore the length (lx) and width (lz) of the wall-attached 

u structures to examine whether the sizes of the type-A and type-
B structures are characterized by ly and δ, respectively. The 
length scales of individual structure is defined as the 
circumscribing box dimensions of an object; i.e., lx, ly and lz are 
the streamwise, wall-normal and spanwise lengths, respectively. 
Figure 5(a,b) represents joint PDFs of lx and lz of the wall-
attached u structures with respect to ly. Here, the contour and line 
contours indicate the distributions of the APG and ZPG, 
respectively. The mean lx and lz at a given ly are denoted by the 
inserted cycles; APG (red) and ZPG (black). As shown in figure 
5(a), the lx of the type-A structures (100ν/uτ < ly < 0.6δ) scales 

with ly and in particular follows the power law 0.74~x yl l  (yellow 

solid line), in both TBLs. Above ly > 0.6δ, the lx rapidly increases 
and then the mean lx exhibits a constant value lx ≈ 3.5δ at ly > δ 
(blue horizontal line), indicating that very tall structures (i.e., 
type B) are non-self-similar and scale with the outer length scale 
δ. In addition, the contours show the protrusions near ly ≈ δ, 
which represent the existence of long attached structures with ly 
> 6δ (i.e., superstructures or very-large-scale motions). In figure 

5(b), we can observe the linear relationship between lz and ly 
(yellow solid line) from ly

+ = 100 to ly = δ. In other words, the 
spanwise length of the attached u structures (ly

+ > 100) is 
proportional to the distance from the wall, which is consistent 
with the results of Hwang (2015) that large-scale and very-large-
scale motions are self-similar with respect to the spanwise 
wavelength. In particular, the width distributions of the APG and 
ZPG collapse well, reflecting that the spanwise length scales of 
attached u structures will not be significantly modulated by the 
APG. In sum, the type-A structures are geometrically self-
similar with respect to ly whereas the streamwise length of the 
type-B motions scales with the outer length scale. 

The streamwise Reynolds stresses and the Reynolds shear 
stresses carried by type A and type B are defined as 
 

 
attached

/ 0.6

A
( )

DoI 100

1
( ) ( ) ( )d ,

y

y
y

l

l
l

uu y u u
mV










     x x x  (3) 

 
attached

=

B
( )

DoI / 0.6

1
( ) ( ) ( )d .

y y

y
y

l

l
l

uu y u u
mV








     x x x  (4) 

 

Figure 6(a) shows the wall-normal profiles of Auu    in the APG 

(red) and ZPG (black). Interestingly, both profiles are self-
similar along the wall-normal direction and in particular there is 
a logarithmic variation over 100 < y+ < 250. This behavior 
supports that the attached u structures (100ν/uτ < ly < 0.6δ) 
correspond to the type-A eddies (Perry & Marusic 1995). In 
other words, these structures are universal motions and directly 

contribute to the presence of the log region. Contrary to A ,uu    

Buu    of the APG is entirely different from that of ZPG with a 

distinct outer peak at y+ = 230 (figure 6b). The enhanced 
streamwise Reynolds stress carried by the attached u structures 

in the APG attached( uu    shown in figure 3b) is due to the 

contribution of the type-B structures (ly > 0.6δ). Moreover, the 
magnitude of the outer peak (y+ ≈ 240) is greater than that of the 
inner peak at y+ ≈ 15, reflecting that the attached u structures 
with ly > 0.6δ are responsible for the wake region. In addition, 

there is no logarithmic variation in B,uu    indicating that the tall 

attached u structures are associated with very-large-scale 
motions or superstructures (Jiménez & Hoyas 2008). 
 

 
Figure 6. (a) Auu    and (b) B.uu    (c) Auv    and B.uv    

The solid line represents the logarithmic variation in :iuu    

A 0.37 ln( ) 2.12uu y       in y+ =100 ~ 250 for APG and 

A 0.32 ln( ) 1.84uu y       in y+ = 100 ~ 250 for ZPG.  

 
WALL-DETACHED STRUCTURES 
In this section, we examine the detached structures of u, which 
account for 50.0% of the total volume of u clusters in the APG 
and ZPG TBLs. In addition, the contributions of the detached u 
structures to the Reynolds stresses show a good agreement at y+ 
< 100 between the APG and ZPG, whereas there is a large 
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discrepancy above y+ = 100 in figure 3(b). To further explore this 
difference, we investigate the detached structures with respect to 
their sizes and the wall-normal location (yc). Here, yc = (ymin + 
ymax)/2 is the center of the detached structures from the wall. 

First, the number wall-detached structures per unit wall-

parallel area *
detached( )n  is defined as *

detached detached ( , )/y cn n l y   

( ),xzmA  where ndetached is the number of detached structures as a 

function of yc and ly. As shown in figure 4(b), the magnitudes of 

detacheduu    and detacheduv    are larger in the region of y+ > 100 

than those of ZPG. Hence, we focus on the detached structures 

with yc
+ > 100. Figure 8 shows *

detachedn  with respect to ly
+ and yc

+ 

for APG (color contour) and ZPG (line contour). As yc
+ increases, 

*
detachedn  increases and the range of their heights becomes broader 

from ly
+ = 10 to ly/δ = 0.7. In addition, a peak is observed at yc

+ 
= 550 and ly

+ = 60, indicating the detached u structures are 
dominant in the outer region. 

 

 
Figure 7. Contour maps of *

detachedn  for APG (color) and ZPG 

(line) as a function of ly
+ and yc

+. 
 

 
Figure 8. Joint PDFs of (a) lx and ly and of (b) lz and ly of type-C 
structures. Color and line contours indicate APG and ZPG, 
respectively. Circle symbols are the mean lengths. Green solid 
lines indicate lx = ly in (a) and lz = 0.9ly in (b). Yellow solid and 
dashed lines in (a,b) represent ly = 40η and 20η of APG, 
respectively. 
 

Figure 8 shows joint PDFs of lx and ly and of lz and ly of the 
detached structures. As seen, the contours of the APG and ZPG 
collapse well, indicating that the sizes of the detached structures 
are universal. There are two regions, representing that the 
detached u structures are classified into self-similar and non-
self-similar groups. Above ly

+ = 100, the mean lx and lz (inserted 
circles) are linearly proportional to ly, and in particular the aspect 
ratio of their sizes follow lx ≈ ly ≈ lz, indicating that the tall 
detached structures (ly

+ > 100) are geometrically isotropic and 
self-similar with respect to their sizes. This result is similar to 
the sizes of detached sweep and ejections which follow the ratio 
lx ≈ 1.2ly ≈ 1.2lz in APG and ZPG TBLs (Maciel et al. 2017b). 
On the other hand, the detached motions with ly

+ < 100 follow 
the yellow solid lines lx = 40η(ly) and lz = 40η(ly) (figure 8), 
where η is the Kolmogorov length scale. In other words, these 
motions are not self-similar according to ly. In addition, the 
yellow dashed line (lx ~ lz ~ 20η) lies on the contour of over 0.05. 
This observation is consistent with the length scales (~ 20−40η) 
of detached vortical clusters (del Álamo et al. 2006) and 
detached sweep and ejections (Lozano-Durán et al. 2012). 

Hence, the short detached u structures (ly
+ < 100) are associated 

with the Kolmogorov-scale motions and they are equilateral at a 
given ly (lx = lz = 40η). The outer peak (at yc

+ = 550 and ly
+ = 60) 

observed in the population density (figure 7) is due to this type 
of motions. 
 
 

To investigate the contributions of short and tall detached u 
structures to detached ,uu   we compute uu   carried by the short 

(ly
+ < 100) and tall (y+ > 100) detached u structures, which can 

be obtained from a similar way with (3) and (4). Figure 9 shows 

short tall,  uu uu      and detacheduu    as a function of y/δ. The 

detached u structures with yc
+ > 100 are responsible for 

detacheduu    in the region of y+ > 100 (y/δ > 0.13). As expected 

above, the tall detached u contributes 90% of detacheduu    in the 

region of y/δ > 0.2, while the short objects account for 10% of 

detached .uu    Tall detached structures who are scaled by the 

viscous length are isotropic and geometrically self-similar. The 

peak of talluu    is observed at y/δ = 0.53, and its magnitude is 

26% of Buu    at that location. Perry et al. (1986) supposed that 

detached eddies originate from the debris of dead attached eddies, 
which are advected away from the wall and deformed by 
attached large scales. In other words, they could be remainders 
once attached to the wall earlier in their lifetime (Marusic & 
Monty 2019). Hence, the origin of the tall detached u could be 
fragments of the large-scale attached structures (or type-B 
structures) in the outer region. To verify this, their temporal 
variation is necessary, but that is beyond the scope of the present 
work. On the other hand, the contribution of the short detached 

structures to uu    is too small compared to that of tall .uu    

However, since the small-scale motions have an important role 
in dissipation process, these motions should be considered when 
we explore the dynamics of u clusters to examine multiscale 
energy cascade in wall turbulence. 
 

 
Figure 9. short tall,  uu uu      and detacheduu    for APG and ZPG. 

 
CONCLUSIONS 
3D coherent u clusters have been explored in a view of the 
attached-eddy model. We have extracted u clusters by using the 
connectivity of six-orthogonal neighbors in Cartesian 
coordinates without any filter and assumption from DNS dataset 
of APG (β = 1.43) and ZPG (β = 0) TBLs at Reτ ≈ 800. The 
identified structures are decomposed into attached self-similar, 
attached non-self-similar, detached self-similar and detached 
non-self-similar structures with respect to ymin and ly.  
The wall-attached self-similar structure (ly

+ > 100 and ly/δ < 0.6) 
are universal wall motions in the logarithmic region, and their 
statistical features are equivalent to those of type-A motions in 
the attached-eddy models of Perry and coworkers. The attached 
non-self-similar structures (ly/δ > 0.6) are responsible for the 
enhanced outer large scales under APG and incorporate the 
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characteristics of tall type-A (ly = Ο(δ)) and type-B motions 
described in the works of Perry and coworkers. On the other 
hand, the detached self-similar structures (yc

+ > 100 and ly
+ > 100) 

are geometrically isotropic (lx ≈ ly ≈ lz) and mainly populated in 
the outer region, while the sizes of the detached non-self-similar 
structures (yc

+ > 100 and ly
+ < 100) are scaled by the Kolmogorov 

length scale (lx = lz = 40η). The former structures carry 

approximately a quarter of Buu    in the outer region, implying 

that they are the remnants of the attached non-self-similar 
structures. The present study first classify 3D coherent u clusters 
into attached/detached and self-similar/non-self-similar, which 
are in a good agreement with type-A, B and C motions in the 
attached-eddy model. We examine the statistical properties of 

each motion and the contirbution of that to ,uu    which can 

provide a new insight into the understanding of coherent 
structures and the development of the attached-eddy model. 
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