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ABSTRACT
Experiments are described on the propulsive perfor-

mance of flexible plates sinusoidally actuated at the lead-
ing edge and passively deforming along the chord. Local
resonant boosts in deflection, thrust, and power appear as
the plates are actuated near natural frequencies. Nonlinear
finite-amplitude effects are evident, and, among other rea-
sons, render scaling results from the literature ineffective.
We use physical arguments to define new scaling variables,
and show how they are able to capture the behaviour of the
propulsive performance.

INTRODUCTION
An important quality of swimmers is the flexibility of

their propulsive surfaces (for example, the caudal or tail fin).
When a swimmer actuates its propulsor near a resonant fre-
quency of the coupled fluid-structure system, the flexible
propulsor may experience a boost in thrust (Alben, 2008)
and efficiency (Dewey et al., 2013) compared to its rigid
counterpart. Although conferring important propulsive ben-
efits, the flexibility of the propulsor makes a simple analysis
evasive.

To this end, we seek to develop scaling laws that pro-
vide meaningful physics responsible for the observed fluid-
structure phenomena. Since our interests lie mainly in
propulsion, we shall focus on the thrust that flexible propul-
sors produce, as well as how efficiently they produce thrust.

Robust scaling laws have already been successfully de-
veloped for rigid propulsors (Floryan et al., 2017; Van Bu-
ren et al., 2018b; Floryan et al., 2018; Floryan et al., 2019).
These scaling laws, along with the analytical theories of
Garrick (1937) and Lighthill (1971), underscore the im-
portance of the flow at the trailing edge of the propulsor
(Van Buren at al., 2018a). We hypothesize that the condi-
tion of the trailing edge will be equally important for flexi-
ble propulsors. To test our hypothesis, we have undertaken
a large experimental campaign spanning different motion
types, amplitudes, frequencies, and stiffnesses of flexible
propulsors.

PROBLEM SETUP
We consider a nominally two-dimensional, thin, in-

extensible elastic plate of length c, span s, thickness d,
density ρs, and flexural rigidity B = EI, where E is the
Young’s modulus and I = sd3/12 is the second moment
of area of the plate, undergoing heave and pitch oscilla-
tions about its leading edge. The motions are described by
h(t) = h0 sin(2π f t) and θ(t) = θ0 sin(2π f t + φ), respec-
tively, where h0 is the heave amplitude, θ0 is the pitch am-
plitude, φ is the phase between the two motions, and f is
the frequency of oscillation, and are sketched in figure 1.
The foil moves horizontally at a constant speed U∞ through
a fluid of density ρ f and viscosity µ , and the motion of the
foil causes the surrounding fluid to impart forces onto it. We
are chiefly concerned with the time-averaged thrust coeffi-
cient, CT , produced by the foil, the power input coefficient,
CP, and the efficiency of the thrust production, η =CT /CP.
Here,

CT =
Fx

1
2 ρ f U2

∞sc
, CP =

Fyḣ+Mθ̇

1
2 ρ f U3

∞sc
, (1)

where Fx is the force produced in the streamwise direc-
tion (the thrust), Fy is the force produced in the transverse
direction, M is the moment about the leading edge, and
the overbar denotes time-averaging. A set of dimension-
less parameters describing the problem are the reduced fre-
quency, f ∗ = f c/U∞, the dimensionless heave and pitch
amplitudes, the phase between heave and pitch, the mass ra-
tio R = ρsd/ρ f c, and the stiffness ratio S = Ed3/ρ f U2

∞c3.
The mass ratio is small for swimmers since they are thin
and neutrally buoyant, so its effects can be ignored. Other
common dimensionless inputs can be constructed from the
aforementioned dimensionless parameters.

Since the plate is passively flexible, its deformation is
unknown a priori. The motion of the trailing edge must
therefore be measured, whereas for rigid plates it can be
calculated from the actuation parameters. In particular, the
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Figure 1. Experimental setup.

Strouhal number St cannot be calculated a priori, where

St =
2 f A0

U∞

. (2)

Here, A0 is the amplitude of the vertical displacement of the
trailing edge.

Knowing the motion of the trailing edge is important
because, as alluded to in the Introduction, it is a principal
parameter governing the propulsive performance of flap-
ping plates (at least rigid ones), although other parameters,
such as f ∗, are also important.

EXPERIMENTAL SETUP
We perform experiments on heaving and pitching

plates in a water tunnel, shown schematically in figure 1.
Rectangular plates of four different rigidities B = 0.00136,
0.00189, 0.00375, and 0.00736 N·m2 are used, with a chord
of c = 124 mm and span of s = 180 mm. Flat acrylic plates
are installed at the top of the tunnel to eliminate surface
waves. The tunnel velocity is fixed at U∞ = 100 mm/s,
yielding a chord-based Reynolds number of Re = 12350
and stiffness ratios S = 4.77, 6.64, 13.1, and 25.8. This
range of stiffness ratios is outside of the range where flutter
behaviour exists (Floryan & Rowley, 2018). Frequencies
range between 0.2 and 1.5 Hz every 0.1 Hz, heave ampli-
tudes are 0, 12.5, and 37.5 mm, and pitch amplitudes are
0◦, 5◦, and 15◦. The reduced frequencies range between
0.284 and 1.86, and the dimensionless heave amplitudes are
h∗ = h0/c = 0, 0.10, and 0.30. Forces and torques are mea-
sured directly via a six-component force and torque sensor,
and heave and pitch at the leading edge are measured via
encoders. Each case runs for 30 cycles of the motion, with
the first and last five cycles used for warmup and cooldown.
For each case, nine trials are performed; the plotted data in
the rest of this work show quantities averaged across trials.

Measuring the position of the trailing edge presents a
challenge. It is possible to record the motion of the flexible
plate with a camera and extract the instantaneous shape of
the plate from the recorded images. The sheer number of
experiments, however, required a different approach. Here,
we record the deflection of the plate at the mid-span at nine
evenly spaced streamwise locations using a laser displace-
ment sensor, massively reducing the amount of data taken

and stored. Together with the encoder measurements, the
laser displacement measurements are used to estimate the
deflection of the plate.

Estimating the deflection
The laser displacement measurements at each location

are passed through a Hampel filter in order to remove out-
liers and are then phase-averaged. The phase-averaged sig-
nal is smoothed in time by removing frequencies greater
than the fifth harmonic of the actuation frequency. A cubic
polynomial is fit to the filtered laser displacement and en-
coder measurements, yielding an estimate for the deflection

Y (x, t) =
3

∑
n=0

cn(t)xn. (3)

For the ranges of parameters explored in this study, a cubic
polynomial has sufficient degrees of freedom to accurately
model the deflection, but few enough degrees of freedom
to avoid unphysical wiggliness. The coefficients c0 and c1
are fixed so that Y (0, ·) is equal to the heave encoder mea-
surements, and Yx(0, ·) is equal to the tangent of the pitch
encoder measurements. The other coefficients are calcu-
lated by least squares regression. The coefficients cn are
then smoothed in time by removing frequencies greater than
the third harmonic of the actuation frequency. The resulting
polynomial accurately models the deflection between the
leading edge and the location of the furthest downstream
laser measurement.

Since the trailing edge lies downstream of the deflec-
tion measurement locations, we need to extrapolate to es-
timate its position. Most of the time, linear extrapolation
is sufficient: we calculate the slope of the fitted polyno-
mial at the furthest downstream laser measurement location,
and extend a straight line with the same slope downstream
until the arc length of the curve is equal to the length of
the panel (the arc length of the polynomial is calculated by
adaptive Gauss-Kronrod quadrature). We use this method
for two reasons: (1) it satisfies the ‘free-end’ boundary con-
ditions θs = θss = 0 (no moment and no shear) at the trail-
ing edge, where θ is the local angle of the plate and s is the
arc length coordinate along the plate; and (2) it is robust to
measurement noise. Linear extrapolation works well when
the location of the furthest downstream laser measurement

2



11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11)
Southampton, UK, July 30 to August 2, 2019

Figure 2. Ten snapshots, evenly spaced in time, of the de-
formation of a flexible heaving and pitching plate extracted
from laser displacement measurements. The path of the
trailing edge is shown as a red curve. Data corresponds to
f ∗ = 1.86, h∗ = 0.302, θ0 = 15◦, φ = 270◦, and S = 4.77.

is close to the trailing edge. At times, however, the panel
deflects such that the trailing edge is upstream of the last
laser measurement location. In this case, the next closest
laser measurement may be relatively far from the trailing
edge, and the panel may have significant curvature, mak-
ing linear extrapolation inappropriate. When this happens,
we instead find the unique quartic polynomial whose value,
slope, and curvature match those of (3) at the location of
the last valid laser measurement, that satisfies the free-end
boundary conditions, and that yields the correct arc length.
The location of the trailing edge must be iteratively solved
for when using the quartic polynomial, and we use the pre-
viously described linear extrapolation method to provide
an initial guess. Once the position of the trailing edge is
calculated, it is smoothed in time by removing frequencies
greater than the fifth (tenth) harmonic of the actuation fre-
quency for the y (x) position of the trailing edge (the fun-
damental frequency of the x position of the trailing edge is
twice the actuation frequency).

An alternative method is to estimate the local deflec-
tion angle θ as a function of the arc length coordinate s. We
did so by estimating values of θ at the measurement loca-
tions by second-order finite difference, and values of s at the
measurement locations by ∆s =

√
∆x2 +∆y2, where ∆x and

∆y are the differences in the x and y coordinates between
successive measurement locations. We then estimated θ

as a polynomial in s, constraining it to satisfy the free-end
boundary conditions at the trailing edge. The x and y co-
ordinates are then calculated by integrating dx = cos(θ)ds
and dy = sin(θ)ds. Ultimately, we found this method to be
sensitive to measurement noise, so all results reported here
use the first method.

Figure 2 shows an example where we have extracted
the shape of a flexible plate. The path of the trailing edge
is drawn in red to highlight that we are able to extract the
angle and velocity of the trailing edge. Although we have
not done so in this example, we may enforce the up-down
symmetry of the problem by only using the first few odd
temporal Fourier modes of the shape. Since we have the
entire deflection field of the plate, we may also calculate
the area swept by the plate, as shown in figure 3.

RESULTS AND DISCUSSION
In figure 4, we plot the trailing edge amplitude relative

to that of a rigid plate with the same leading edge actuation
as a function of the reduced frequency. Here and through-
out, darker curves correspond to stiffer plates. The curves
all show peaks in amplitude, with stiffer plates having peaks
at greater reduced frequencies.

Figure 3. Same as figure 2, but showing the area swept by
the plate.

As shown in Floryan & Rowley (2018), for large
enough values of S, reduced frequencies corresponding to
natural frequencies of the fluid-structure system scale as√

S, so natural frequencies should occur at constant val-
ues of f ∗/

√
S. This result is obtained by noting that for

an Euler-Bernoulli beam in vacuum only one time scale ex-
ists, and in a fluid where the mass ratio is small the time
scale is modified by replacing the characteristic solid mass
by the characteristic fluid mass. The same dmensionless
frequency was identified in Dewey et al. (2013) and Quinn
et al. (2014) through different physical arguments. When
replotting the trailing edge amplitude against this rescaled
frequency, as in figure 5, we see that the peaks align. We
also see that greater amplitudes of leading edge actuation re-
duce the natural frequency and the amplitude relative to that
of a rigid plate. In a linear system, the curves for different
amplitudes would collapse upon each other. The reductions
in natural frequency and amplitude with increasing leading
edge amplitude indicate that nonlinear, finite-amplitude ef-
fects are important in this system. Any scaling relations
will have to reflect the nonlinearities present in the system,
at least implicitly.

In figures 6 and 7, we show the thrust and power coef-
ficients for our flexible plates scaled in such a way that, ac-
cording to the literature, the data should collapse (Dewey et
al., 2013; Quinn et al., 2014). In figure 7a, Str is the same as
the usual Strouhal number, but uses the trailing edge ampli-
tude that a rigid plate with the same actuation would have.
This scaling evidently does not work, and especially fails to
capture amplitude effects in the case of pitching plates.

Since the thrust and power can be effectively scaled by
the trailing edge velocity for rigid plates, we use the same
concept here for flexible plates. In particular, we investigate
three different Strouhal numbers for scaling the data. The
first is Str, which uses the trailing edge amplitude that would
be achieved if the plate was rigid (we do not expect this to
work since it does not capture any information about flexi-
bility). The second is St as defined in (2) (it implicitly cap-
tures flexibility and nonlinear finite-amplitude effects since
it uses the measured flexible trailing edge amplitude). Since
St did not work for scaling the thrust of heaving plates, we
define a third Strouhal number Stsw, which uses half of the
area swept by the plate divided by the plate’s length instead
of A0. The idea behind Stsw is that it captures how much
fluid is put into motion by the plate.

The thrust and power of heaving and pitching plates
are shown as functions of the three Strouhal numbers in fig-
ures 8–11. Not surprisingly, Str is ineffective in all cases.
St and Stsw fare better, especially for pitching plates, but
even in those cases the data are somewhat spread apart (the
data are more spread at lower Strouhal numbers, which is
obscured by the scales of the vertical axes). For flexible
plates, it is clear that the behaviour of the thrust and power
cannot be simply captured by the behaviour of the trailing
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Figure 4. Ratio of trailing edge amplitude to that of a rigid plate with the same leading edge motion for (a) heaving and (b)
pitching plates as a function of reduced frequency. Darker lines correspond to stiffer plates.
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Figure 5. Same as figure 4, but as a function of a different dimensionless frequency.
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Figure 6. Thrust coefficient for (a) heaving plates using the scaling of Quinn et al. (2014), and (b) pitching plates using the
scaling of Dewey et al. (2013).
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Figure 7. Power coefficient for (a) heaving plates using the scaling of Quinn et al. (2014), and (b) pitching plates using the
scaling of Dewey et al. (2013).

edge as in the case of rigid plates.

We also show the efficiency as a function of the three
Strouhal numbers for heaving and pitching plates in fig-
ures 12 and 13. As for thrust and power, the Strouhal num-
bers do not capture the behaviour of the efficiency. Plot-
ting the efficiency as a function of the frequency that cap-
tured resonant behaviour does reveal some interesting ten-
dencies, however, and is shown in figure 14. Two trends
stand out: first, more flexible plates have greater efficiency;
and second, smaller leading edge amplitudes have greater
efficiency. More flexible plates may be more efficient be-

cause they offer less resistance against the preferred motion
of the fluid, although this argument would also imply that
they are less able to generate thrust. Greater amplitudes
are likely less efficient because they produce greater off-
set drag (Floryan et al., 2018). That is, plates with greater
amplitudes will have greater projected frontal areas, which
increases the offset drag (the drag in the limit of vanish-
ing frequency). For flexible plates, the offset drag cannot
be determined directly because as the frequency decreases
the dynamics of the deflection of the plate change, so the
projected frontal area will as well.

4



11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11)
Southampton, UK, July 30 to August 2, 2019

0 0.4 0.8 1.2
0

4

8

12
h* = 0.10
h* = 0.30

0 0.6 1.2 1.8

h* = 0.10
h* = 0.30

0

4

8

12

0

4

8

12
h* = 0.10
h* = 0.30

0 0.4 0.8 1.2

(a) (b) (c)

Figure 8. Thrust coefficient for heaving plates as a function of the Strouhal number based on (a) input amplitude, (b) measured
amplitude, and (c) swept area.
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Figure 9. Thrust coefficient for pitching plates as a function of the Strouhal number based on (a) input amplitude, (b) measured
amplitude, and (c) swept area.
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Figure 10. Power coefficient for heaving plates as a function of the Strouhal number based on (a) input amplitude, (b) mea-
sured amplitude, and (c) swept area.
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Figure 11. Power coefficient for heaving plates as a function of the Strouhal number based on (a) input amplitude, (b) mea-
sured amplitude, and (c) swept pitching.
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Figure 12. Efficiency for heaving plates as a function of the Strouhal number based on (a) input amplitude, (b) measured
amplitude, and (c) swept area.
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Figure 13. Efficiency for pitching plates as a function of the Strouhal number based on (a) input amplitude, (b) measured
amplitude, and (c) swept area.
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Figure 14. Efficiency for (a) heaving and (b) pitching plates as a function of the rescaled frequency used in figure 5.

CONCLUSIONS
We have described experiments on flapping flexible

plates spanning different motion types, amplitudes, fre-
quencies, and stiffnesses. For the ranges of frequencies and
stiffnesses explored here, only the first resonant frequencies
were observed. The flexible plates experience local boosts
in thrust and power when actuated near a natural frequency,
although the boosts are weak due to the natural frequen-
cies being heavily damped. The efficiencies of the flexible
plates have local peaks, as in the case of a rigid plate, but
resonance modifies the frequency at which peak efficiency
is attained. Nonlinear finite-amplitude effects are clearly
important in the experiments.

As suggested by analytical results and experiments
on rigid plates, the condition of the trailing edge is a
vital factor in determining propulsive performance. In
order to see if this result rings true for flexible plates, we
have developed a novel low-cost method to accurately
reconstruct the deflection of a flapping flexible plate, in
particular the deflection of the trailing edge. We found that
the condition of the trailing edge alone cannot capture the
behaviour of thrust and power, although it seems to capture
resonant phenomena. Simple scaling relations for the
propulsive performance of flexible plates remain elusive.

This work was supported under ONR MURI grant
N00014-14-1-0533 (Program Manager Robert Brizzolara).
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