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ABSTRACT

We carry out direct numerical simulations (DNSs)

of minimal open-channel flow over riblets, which are

streamwise-aligned grooves that modify the near-wall flow

for drag reduction. Several riblet sizes and cross-sectional

geometries are simulated, namely symmetric triangular,

asymmetric triangular, blade and trapezoidal. With this

unprecedented breadth and detail afforded by the DNS

data, we are able to obtain more general insights into the

flow physics of riblets. A generalization of the Fukagata–

Iwamoto–Kasagi (FIK) identity is used to isolate the differ-

ent contributions to skin friction drag changes. We show

that, in the nonlinear regime of large riblet size, the dis-

persive contribution is comparable or larger than the turbu-

lent one, representing an important mechanism to the break-

down of drag reduction.

INTRODUCTION

A large proportion of the energy required in trans-

portation systems and pipe systems is used to overcome

fluid-dynamic drag. In particular, skin friction constitutes

50% of the total drag on aircraft. Hence reduction in skin

friction can bring a substantial energy saving. Riblets are

streamwise-aligned micro-grooves that can reduce skin fric-

tion drag by up to 10% under laboratory conditions (Bechert

et al., 1997) and approximately 5% at full-scale condi-

tions (Spalart & McLean, 2011), and are therefore consid-

ered one of the most promising techniques of passive drag

reduction. The regime in which riblets reduce drag is re-

ferred to as the viscous or linear regime as drag decreases

linearly with the riblet size, up to an optimum. Never-

theless, further increasing the riblet size leads to a break-

down of the linear regime and riblets eventually increase

drag. Drag reduction can be related to the mean velocity

shift with respect to the flat wall, DR ∝ ∆U+ = U+
f −U+,

where U+
f and U+ are the friction-scaled mean velocities

of the flat and riblet wall measured in the log-layer, respec-

tively and the constant of proportionality depends on the
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Figure 1. ∆U+ as a function of the square root of groove

area ℓ+g = ℓg/δv, where ℓg =
√

Ag. Symbols represent

different flow cases: , triangles α = 30◦; , triangles

α = 60◦; , triangles α = 90◦; , trapezoids α = 30◦;

, blades s/t = 5; , asymmetric triangles α = 63.4◦;

, experimental data of triangles α = 60◦ from Bechert

et al. (1997) ; , DNS data for blades s/t = 4 from Garcı́a-

Mayoral & Jiménez (2011).

Reynolds number. Figure 1 shows ∆U+ as a function of the

viscous-scaled square root of the groove area ℓ+g ≡ ℓg/δv

(δv ≡ ν/uτ , ν is the kinematic viscosity, uτ ≡
√

τw/ρ the

friction velocity, τw is the wall-shear stress and ρ is the den-

sity). Data are compared for the present direct numerical

simulation (DNS) dataset, previous DNS of Garcı́a-Mayoral

& Jiménez (2011) and the experiments of Bechert et al.

(1997). In the linear regime (ℓ+g . 10–11) riblets reduce

drag by shifting turbulence away from the wall, relative to

the streamwise flow, an idea which can be described by pro-

trusion heights (Luchini et al., 1991). Despite the additional

insight provided by previous experimental and numerical

studies, two fundamental aspects of the flow physics of ri-
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blets are not yet fully understood: i) the effect of the groove

shape and ii) the breakdown of drag reduction. On the first

point most parametric studies involving the effect of the ge-

ometry have been carried out through experiments (Bechert

et al., 1997), which do not provide access to the three di-

mensional flow field, whereas DNS studies of riblets are

limited to triangular and blade geometries (Goldstein &

Tuan, 1998; Garcı́a-Mayoral & Jiménez, 2011). On the

second point, different mechanisms have been proposed for

the breakdown in drag reduction, but often these are based

on observations from distinct riblet geometries. For ex-

ample Goldstein & Tuan (1998) studied the turbulent sec-

ondary flows, or turbulent dispersion using DNS of trian-

gular riblets and attributed it to the breakdown of the linear

regime, arguing that the loss of performance occurring for

large riblets (ℓ+g & 20) could be tackled by disrupting these

secondary velocities. Another mechanism has been pro-

posed by Garcı́a-Mayoral & Jiménez (2011), who carried

out DNS of blade riblets and observed that large grooves

trigger the onset of spanwise-coherent vortical structures,

which are visible in the 2D pre-multiplied velocity spec-

trum right above the riblet crest, and are similar to Kelvin–

Helmholtz rollers which represent an additional contribu-

tion to the Reynolds stress. Therefore, what is needed is a

systematic study across a broad parameter space to assess

the validity and generality of the various proposed mech-

anisms. To this end, we carry out DNS of minimal open-

channel flow over many riblet sizes and geometries, namely

triangular, trapezoidal and blade riblets, to understand if a

common mechanism leading to the breakdown of drag re-

duction exists.

METHODOLOGY
We solve the incompressible Navier–Stokes equations

with a uniform and constant kinematic driving pressure gra-

dient Π > 0. The equations are discretized using an un-

structured finite volume solver CTI Cliff (Ham et al., 2006),

and the computational domain is a minimal open chan-

nel (Chung et al., 2015; MacDonald et al., 2017) with di-

mensions Lx × Ly × δ . The minimal channel allows us to

extract ∆U+ at an affordable computational cost while re-

solving the flow–riblet interaction below the critical height

zc ≈ 0.4Ly. The minimal channel flow results match the

ones of the full channel, as long as zc is above the roughness

sublayer, which is verified for all cases presented here. Sim-

ulations are set up to have the same volume and the open-

channel height δ , defined as the distance from the top flat

surface to the mean height of the riblets. The mean wall-

shear stress τw is thus fixed for the same pressure gradient,

τw = ρΠδ and the friction Reynolds number is also fixed,

Reτ = δ/δv = 395.

The streamwise, spanwise and wall-normal directions

are denoted by x,y and z, respectively, and the velocity

components in the corresponding directions are u,v and w.

Ensemble averages (averages in time, streamwise direction

and riblets period) are indicated by the overline symbol,

θ(y,z) with y ∈ [0,s], whereas plane averages (averages in

streamwise, spanwise direction and in time) are indicated

as 〈θ〉(z). Turbulent fluctuation are defined with respect to

ensemble averages, θ ′ = θ −θ . Variables normalized with

respect to wall units (δv, uτ ) are denoted with a + super-

script. No-slip boundary conditions are imposed at the bot-

tom riblet wall, whereas a free-slip impermeable boundary

condition is imposed at the top boundary and periodicity is

imposed in the streamwise and spanwise direction. We con-

sider four riblet geometries, both in the drag decreasing and

increasing regime, and compare them to a flat wall case.

Different riblet geometries are indicated as TIs+, ATs+,

BLs+ and TAs+, for symmetric triangle, asymmetric tri-

angle, blade and trapezoid, respectively, where s+ ≡ s/δv,

the viscous-scaled riblet spacing (table 1).

CONTRIBUTIONS TO THE CHANGE IN DRAG
Riblets operating in the nonlinear regime show the

presence of non-zero mean cross-stream velocities v, w

which carry additional stress. In order to understand the

relation between dispersive velocities and drag change we

report v+ and w+ in the cross-stream plane in figures 2 and

3, respectively. We note that the intensity of v+ and w+

increases with the riblet size, suggesting a correlation be-

tween dispersive velocities and increasing drag ( indi-

cates drag reducing cases, drag increasing cases). The

mean wall-normal velocity component w+ (figure 2) is spa-

tially organized into three lobes, two positive ones towards

the riblet crests and a negative one at the center of the

groove. On the other hand, the mean spanwise velocity

component v+ (figure 3) is constituted by four lobes with

alternating sign, which together with w+ form two counter

rotating vortices laying in the riblet groove, as shown from

the stream function ψ+ = ψ/ν , figure 4. Note that large

asymmetric riblets show a small, but non-zero, net v+ ≈ 0.1,

but this does not seem to affect the drag curve (figure 1). In

order to quantify the contribution of the dispersive veloc-

ities to the breakdown of drag reduction we consider the

streamwise mean momentum equation in divergence form,

−Π+∇ · τD +∇ · τT = ν∇2u, (1)

where τD = (uv,uw) and τT = (u′v′,u′w′) are the disper-

sive and turbulent contributions to the mean momentum bal-

ance equation. In order to quantify the relative contribution

of the terms in (1) to ∆U+ we use the approach of Mod-

esti et al. (2018) who generalized the Fukagata–Iwamoto–

Kasagi (FIK) identity (Fukagata et al., 2002) to arbitrary

complex geometries. Indeed, the mean momentum balance

equation (1) can be interpreted as a Poisson equation for

the mean velocity, in which the terms at the left hand side

are the source terms from DNS, representing the laminar,

dispersive and turbulent contributions to the mean velocity.

Therefore, the associated velocity fields uD , uT and uL ,

induced by dispersion, turbulence and pressure gradient, re-

spectively, can be obtained as solutions of three separate

Poisson problems,

∇ · τD = ν∇2uD , ∇ · τT = ν∇2uT , −Π = ν∇2uL ,
(2)

where homogeneous Dirichlet and zero gradient boundary

conditions are used at the wall and at the top boundary, re-

spectively and periodicity is used in the spanwise direction.

Note that the first two of (2) satisfy Green’s identity and by

construction uD and uT do not contribute to the mean wall-

shear stress. The total mean velocity field can be recovered

by summing the three contributions,

u = uL +uT +uD , (3)
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Figure 2. Mean wall-normal velocity component w+ in the cross-stream plane. zv indicates the riblet valley. The green tick

( ) indicates drag decreasing cases, the red cross ( ) drag increasing cases. Positive values (red) indicate flow going upward.
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Figure 3. Mean spanwise velocity component v+ in the cross-stream plane. zv indicates the riblet valley. The green tick ( )

indicates drag decreasing cases, the red cross ( ) drag increasing cases. Positive values (red) indicate flow going rightward.
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Figure 4. Cross-flow stream function ψ+, v = ∂Ψ/∂ z, w = −∂Ψ/∂y. zv indicates the riblet valley and s the riblet spacing.

The green tick ( ) indicates drag decreasing cases, the red cross ( ) drag increasing cases.
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Case s+ ℓ+g k+ α ∆x+ ∆y+min −∆y+max ∆z+min −∆z+max Tuτ/δ A

Asymmetric triangular

s

Ag kα

AT15 15.0 7.5 7.5 63.4◦ 6.5 1.50−5.00 0.400−6.00 45.4 0.50

AT20 20.0 10.0 10.0 63.4◦ 6.5 1.50−5.00 0.400−6.00 64.7 0.50

AT30 30.0 15.0 15.0 63.4◦ 6.5 1.50−5.00 0.400−6.00 18.9 0.50

AT40 40.0 20.0 20.0 63.4◦ 6.5 1.50−5.00 0.400−6.00 87.0 0.50

AT50 50.0 25.0 25.0 63.4◦ 6.5 1.50−5.00 0.400−6.00 57.9 0.50

Symmetric triangular

s

Ag kα

TI10 10.0 9.8 18.8 30.0◦ 6.0 0.0570−1.52 0.0334−7.02 69.4 1.88

TI21 21.1 20.4 39.4 30.0◦ 6.0 0.1190−3.18 0.2270−6.94 65.1 1.88

TI15 15.0 9.7 12.7 60.0◦ 6.0 0.0830−2.22 0.0408−7.05 91.3 0.85

TI35 35.0 23.0 30.3 60.0◦ 6.0 0.1610−4.93 0.0140−4.65 93.6 0.85

TI19 19.2 9.6 9.6 90.0◦ 6.0 0.1080−2.89 0.0471−7.06 127.0 0.50

TI50 50.0 25.0 25.0 90.0◦ 6.0 0.2300−7.05 0.0288−7.00 97.1 0.50

Trapezoidal
s

Ag kα

TA18 17.9 11.8 8.9 30.0◦ 6.0 1.50−5.00 0.800−6.00 50.2 0.50

TA31 31.4 20.5 15.6 30.0◦ 6.0 1.50−5.00 0.800−6.00 47.0 0.50

TA36 36.5 24.0 18.2 30.0◦ 6.0 1.50−5.00 0.800−6.00 49.4 0.50

TA50 50.0 32.9 25.0 30.0◦ 6.0 1.50−5.00 0.800−6.00 45.8 0.50

TA60 62.0 41.1 31.3 30.0◦ 6.0 1.50−5.00 0.800−6.00 46.9 0.50

s/t

Blade

s

Ag k

t
BL20 20.5 12.9 10.1 5.0 6.0 1.00−2.00 0.300−7.00 94.6 0.65

BL34 33.7 21.3 16.7 5.0 6.0 1.00−2.00 0.240−6.90 94.7 0.65

BL40 39.6 25.0 19.5 5.0 6.0 1.00−2.00 0.300−6.90 93.5 0.65

BL50 49.0 31.0 25.0 5.0 6.0 1.00−2.00 0.300−6.70 118.0 0.65

Table 1. DNS cases of minimal open-channel flow. s+ = s/δv and ℓ+g = ℓg/δv, the viscous-scaled riblet spacing and square

root of the groove area, ℓg =
√

Ag. ∆x+ is the viscous-scaled mesh spacing in the streamwise direction and ∆y+min −∆y+max

and ∆z+min − ∆z+max are the minimum-to-maximum range of mesh spacings in the spanwise and wall-normal directions,

respectively. L+
x and L+

y are the viscous-scaled dimensions of the computational domain in the streamwise and spanwise

direction, respectively. L+
x = 2054 for trapezoidal riblets and L+

x = 1027 for all other cases, whereas L+
y ≈ 250 for all cases. T

is the time averaging interval.A= k/s∗ is the riblet equivalent aspect ratio and s∗ the groove spacing, s∗ = s for triangles and

trapezoid s∗ = s− t for blades.
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Figure 5. Contributions to total ∆U+ ( ) from (8): turbulence ∆U+
T ( ), dispersion ∆U+

D ( ), slip ∆U+
S ( ), for (a) triangles

α = 30◦, (b) triangles α = 60◦, (c) triangles α = 90◦, (d) asymmetric triangles α = 63.4◦, (e) trapezoids α = 30◦ and (f ) blades

s/t = 5.
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Figure 6. Contributions to the slip velocity ∆U+
S ( ) from (7): turbulence ∆U+

ST
( ), dispersion ∆U+

SD
( ) and viscous (Stokes)

∆U+
SL

( ), for (a) triangles α = 30◦, (b) triangles α = 60◦, (c) triangles α = 90◦, (d) asymmetric triangles α = 63.4◦, (e)

trapezoids α = 30◦ and (f ) blades s/t = 5. The Stokes prediction ( ) ∆U+ =−∆h+ is also reported, where ∆h = h‖−h⊥

is the difference between the streamwise and spanwise Stokes protrusion heights (Luchini et al., 1991).

due to the linearity of the Laplacian operator. Further aver-

aging equation (3) in the spanwise direction we obtain,

〈u〉= 〈uL 〉+ 〈uT 〉+ 〈uD 〉. (4)

A similar reasoning can be applied to the flat wall mean

velocity profile,

〈u f 〉= 〈u fL 〉+ 〈u fT 〉, (5)

for which the dispersive component is identically zero. In

order to study the contributions to the drag change DR

we use the mean velocity shift with respect to the flat

wall ∆U+ = 〈u f 〉
+(z+c )− 〈u〉+(z+c ), measured at the crit-

ical height z+c in the log-layer, as DR ∼ ∆U+. The riblet

mean velocity profile is evaluated taking into account the ef-

fective virtual origin of turbulence ℓ+T , measured downward

from the riblet crest. ℓ+T is evaluated as the shift of the plane

averaged turbulent stress of the riblet 〈u′w′〉+ with respect

to the turbulent stress of the flat wall. Hence, subtracting

equation (4) from (5),

∆U+ = ∆U+
L

+∆U+
T
+∆U+

D
, (6)

where ∆U+
L

= 〈u fL 〉+(z+c ) − 〈uL 〉+(z+c ), ∆U+
T

=
〈u fT 〉+(z+c ) − 〈uT 〉+(z+c ), ∆U+

D
= −〈uD 〉+(z+c ). An

equation equivalent to (6) can also be obtained using

a 1D FIK identity (Garcı́a-Mayoral & Jiménez, 2011;

MacDonald et al., 2016), with the main difference that

equation (4) retains the flow contributions below the crest.

Moreover, it is convenient to reformulate equation (6) by

introducing the slip velocity at the crest ∆US, allowing to

explicitly introduce the effect of the virtual origin,

∆U+
S = ∆U+

SL
+∆U+

ST
+∆U+

SD
, (7)

where, ∆U+
SL

= 〈u fL 〉+(ℓ+T ) − 〈uL 〉+(z+t ), ∆U+
ST

=

〈u fT 〉+(ℓ+T )− 〈uT 〉+(z+t ), ∆U+
SD

= −〈uD 〉+(z+t ), where

z+t indicates the wall-normal location of the crest. The

laminar slip velocity ∆U+
SL

represents the viscous (Stokes)

slip contribution of Luchini et al. (1991), which should

correspond to the total slip velocity ∆U+
S ∼ ∆U+

SL
=

〈u fL 〉+(ℓ+T )− 〈uL 〉+(z+t ) ∼ ℓ+T − ℓ+u ∼ h+⊥ − h+
‖

in the

limit of small riblets, whereas ∆U+
ST

and ∆U+
SD

are the

turbulent and dispersive contributions to the slip velocity,

which are expected to become relevant in the nonlinear

regime. Having introduced this notation, by adding and

subtracting ∆U+
S from equation (6) the total velocity shift

can be recast as,

∆U+ = ∆U+
S +∆U+

T +∆U+
D , (8)

where ∆U+
T = ∆U+

T
− ∆U+

ST
+ ∆U+

V , ∆U+
D = ∆U+

D
−

∆U+
SD

, and ∆U+
V = ∆U+

L
− ∆U+

SL
a volume contribution

which accounts for the fact that the volume of the flat wall

channel does not match the volume of the riblet channel,

when the effective virtual origin is accounted for. Fig-

ure 5 shows the total ∆U+ and its constituents for the ri-

blet geometries under scrutiny. We note that for small ri-

blets the slip contribution ( ) amounts almost to the total

( ), ∆U+ ≈ ∆U+
S , consistent with the idea that riblets op-

erating in the linear regime reduce drag by increasing the

mean velocity at the crest, with respect to the flat wall (Lu-

chini et al., 1991) and hence the bulk flow velocity. For

riblets of moderate size (ℓ+g < 30) the slip contribution de-

creases with the riblet size, but the turbulent ( ) and disper-

sive ( ) contributions increase, leading to the breakdown

of drag reduction (ℓg & 11). For (ℓg & 11), we find that

the relative contribution of turbulence and dispersion de-

pends on the riblet geometry. The triangular riblets with

opening angle α = 30◦ and α = 60◦ and, to a lesser ex-

tent, the blades (figure 5a, b, f ) show a larger turbulent
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contribution ∆U+
T > ∆U+

D . On the contrary, triangles with

opening angle α = 90◦, asymmetric triangles, and trape-

zoids (figure 5c,d,e) show a larger dispersive contribution

∆U+
D > ∆U+

T . This observation suggests that the riblet

geometry influences the preferential contribution of turbu-

lence or dispersion to the breakdown. Therefore, we clas-

sify the grooves depending on their effective aspect ratio

A = k/s∗, where s∗ is the fluid groove spacing, namely

s∗ = s for triangles and trapezoid and s∗ = s− t for blades.

Grooves with A ≤ 0.5 (triangular α = 90◦, asymmetric

and trapezoidal) present a non-negligible dispersive contri-

bution to ∆U+, whereas groves with A > 0.5 (triangular

α = 30◦–60◦ and blade) present a larger turbulent contribu-

tion, see table 1. This observation suggests that disruption

of the secondary flows for geometries withA< 0.5 might

retard or suppress the breakdown of drag reduction. We

recall here that even though splitting (2) is mathematically

exact, the various contributions are not independent of each

other (Modesti et al., 2018). Even though the splitting (2) is

linear, the underlying equations are nonlinear, therefore the

analysis only provides diagnostic information. We further

note that the total slip contribution ∆US tends to saturate

(ℓ+g ≈ 30) and eventually becomes positive (drag increas-

ing) for ℓ+g > 30 (figure 5e). This trend can be traced back

to the idea that the concept of virtual origin does not strictly

apply for increasing ℓ+g , and the Stokes, linear, prediction

of Luchini et al. (1991) fails, as the near wall turbulence

is substantially altered. In order to understand the mecha-

nism that leads to deviations from the linear trend we report

the single contributions to ∆U+
S in figure 6. The laminar

slip contribution ( ) approximately corresponds to the to-

tal slip ( ) ∆U+
S ≈ ∆U+

SL
, for small ℓ+g , consistent with the

fact that small riblets operate in the linear regime. U+
SL

( )

decreases linearly with ℓ+g , in agreement with Stokes calcu-

lations ( ) (Luchini et al., 1991), whereas ∆U+
ST

( )

increases, eventually leading ∆U+
S to deviate from the linear

behavior, consistently with the fact that the near wall cycle

changes substantially for large ℓ+g . The dispersive contri-

bution to the slip ∆U+
SD

( ) instead is negligible for all ge-

ometries, apart for the large trapezoidal grooves (figure 6e),

for which it reaches ∆U+
SD

≈ 1, although remaining lower

than ∆U+
ST

. This analysis presents a method to quantify the

drag penalty due to the hypothesised effect of turbulence de-

scending below the riblet crest (Lee & Lee, 2001). The re-

sults suggest that turbulent fluctuations play a primary role

in the breakdown of the Stokes regime, and show that the

turbulent flow descending below the riblet crest has a detri-

mental effect on the slip contribution.

DISCUSSIONS AND CONCLUSIONS
We carried out DNS of minimal channel flow over sev-

eral riblet geometries to shed light on the physical mech-

anisms that lead to the breakdown of drag reduction. The

use of minimal channels has been instrumental to develop a

larger dataset than in previous studies, allowing us to reach

more general and solid conclusions. A generalized 2D FIK

analysis (Modesti et al., 2018) allows us to isolate the dif-

ferent contributions to ∆U+ and to gain additional insight

into the flow physics of riblets. In agreement with previ-

ous studies, riblets operating in the linear regime reduce

drag by shifting the virtual origin of turbulence farther from

the wall, increasing the effective mean velocity at the crest,

and thus the bulk flow velocity. Large grooves instead op-

erate beyond the viscous sublayer generating a turbulent

flow, which inevitably carries additional stress. We show

that part of this stress can be traced back to purely turbu-

lent fluctuations, whereas the rest is associated with dis-

persion, namely the (time-averaged) secondary flows filling

the riblet groove. The relative contribution of turbulence

and dispersion depends on the riblet geometry, and grooves

with aspect ratio A < 0.5 show a dominant contribution

of dispersion to ∆U+, whereas riblets withA > 0.5 show

a larger contribution of turbulence. The FIK analysis sug-

gests (although it does not guarantee) that disruption of the

secondary flow for geometries withA< 0.5 might lead to

larger drag reduction. Moreover, this analysis also allows

us to isolate the different contributions to the slip velocity

and shows that deviations from the linear (Stokes) regime

can be attributed to the turbulent stress descending below

the riblet crest.
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